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Precision Medicine
I Adapt treatment to the (genetic) specificities of the patient.
E.g. Trastuzumab for HER2+ breast cancer.

I Data-driven biology/medicine
Identify similarities between patients that exhibit similar phenotypes.

Data + Feature Selection
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Sequencing costs
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Big data!
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Big data!
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GWAS: Genome-Wide Association Studies

Which genomic features explain the phenotype?

p = 105 – 107 Single Nucleotide Polymorphisms (SNPs)
n = 102 – 104 samples

High-dimensional (large p)
Low sample size (small n)
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Missing heritability
GWAS fail to explain most of the inheritable variability of
complex traits.

Many possible reasons:
– non-genetic / non-SNP factors
– heterogeneity of the phenotype
– rare SNPs
– weak effect sizes
– few samples in high dimension (p� n)
– joint effets of multiple SNPs.

7



Is extracting knowledge
from such data doomed

from the start? ???
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Reducing p
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Integrating prior knowledge

Use prior knowledge as a constraint on the selected features

Prior knowledge can be represented as structure:
– Linear structure of DNA
– Groups: e.g. pathways
– Networks (molecular, 3D structure).

Elephant image by Danny Chapman @ Flickr.
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Regularized relevance
Set V of p variables.

I Relevance scoreR : 2V → R
Quantifies the importance of any subset of variables for the question
under consideration.
Ex : correlation, HSIC, statistical test of association.

I Structured regularizerΩ : 2V → R
Promotes a sparsity pattern that is compatible with the constraint on the
feature space.
Ex : cardinality Ω : S 7→ |S|.

I Regularized relevance
arg max
S⊆V

R(S)− λΩ(S)
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Network-guided multi-locus GWAS

Goal: Find a set of explanatory SNPs compatible with a given
network structure.
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Network-guided GWAS
I Additive test of association SKAT [Wu et al. 2011]

R(S) =
∑
i∈S

ci ci = (X>(y − µ))2
i

I Sparse Laplacian regularization

Ω : S 7→
∑
i∈S

∑
j /∈S

Wij + α|S|

I Regularized maximization ofR

arg max
S⊆V

∑
i∈S

ci︸ ︷︷ ︸
association

− η |S|︸︷︷︸
sparsity

−λ
∑
i∈S

∑
j /∈S

Wij︸ ︷︷ ︸
connectivity
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Minimum cut reformulation
The graph-regularized maximization of scoreQ(∗) is equivalent to a s/t-min-cut for a
graph with adjacency matrixA and two additional nodes s and t, whereAij = λWij

for 1 ≤ i, j ≤ p and the weights of the edges adjacent to nodes s and t are defined as

Asi =

{
ci − η if ci > η

0 otherwise and Ait =

{
η − ci if ci < η

0 otherwise .

SConES: Selecting Connected Explanatory SNPs.
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Experiments: Performance on simulated data
I Arabidopsis thaliana genotypes

n=500 samples, p=1 000 SNPs
TAIR Protein-Protein Interaction data∼ 50.106 edges

I Higher power and lower FDR than comparison partners

except for groupLasso when groups = causal structure

I Fairly robust to missing edges
I Fails if network is random.

Image source: Jean Weber / INRA via Flickr.
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SConES: Selecting Connected Explanatory SNPs
I selects connected, explanatory SNPs;

I incorporates large networks into GWAS;

I is efficient, effective and robust.

C.-A. Azencott, D. Grimm, M. Sugiyama, Y. Kawahara and K. Borgwardt (2013) Efficient
network-guided multi-locus association mapping with graph cuts, Bioinformatics 29
(13), i171–i179 doi:10.1093/bioinformatics/btt238
https://github.com/chagaz/scones

https://github.com/chagaz/sfan

https://github.com/dominikgrimm/easyGWASCore
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Increasing n
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Multi-trait GWAS

Increase sample size by jointly performing GWAS for multiple
related phenotypes
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Toxicogenetics / Pharmacogenomics

Tasks (phenotypes) = chemical compounds

F. Eduati, L. Mangravite, et al. (2015) Prediction of human population responses to toxic
compounds by a collaborative competition. Nature Biotechnology, 33 (9), 933–940 doi:
10.1038/nbt.3299
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Multi-SConES
T related phenotypes.

I Goal: obtain similar sets of features on related tasks.

arg max
S1,...,ST⊆V

T∑
t=1

∑
i∈S

ci − η |S| − λ
∑
i∈S

∑
j /∈S

Wij − µ |St−1 ∆ St|︸ ︷︷ ︸
task sharing


S ∆ S ′ = (S ∪ S ′) \ (S ∩ S ′) (symmetric difference)

I Can be reduced to single-task by building a meta-network.
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Multi-SConES: Multiple related tasks
Simulations: retrieving causal features

0

100

200

300

400

M
SE

0

0.2

0.4

0.6

0.8

1.0
Model 1

Model 2

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
Model 3

0

0.2

0.4

0.6

0.8

1.0

0

50

100

150

200

0
20
40
60
80

100
120
140

0

20

40

60

80

100

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

M
CC

M
SE

M
CC

M
SE

M
CC

M
SE

M
CC

Model 4

0

100

200

300

400

M
SE

0

0.2

0.4

0.6

0.8

1.0
Model 1

Model 2

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0
Model 3

0

0.2

0.4

0.6

0.8

1.0

0

50

100

150

200

0
20
40
60
80

100
120
140

0

20

40

60

80

100

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

LACR EN GL GR AG SC

Single task

CR LA GR SC

Two tasks

CR LA GR SC

Three tasks

CR LA GR SC

Four tasks

M
CC

M
SE

M
CC

M
SE

M
CC

M
SE

M
CC

Model 4

M. Sugiyama, C.-A. Azencott, D. Grimm, Y. Kawahara and K. Borgwardt (2014) Multi-task
feature selection on multiple networks via maximum flows, SIAM ICDM, 199–207
doi:10.1137/1.9781611973440.23
https://github.com/mahito-sugiyama/Multi-SConES

https://github.com/chagaz/sfan
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Using task similarity
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Using task similarity

Use prior knowledge about the relationship between the
tasks: Ω ∈ RT×T

arg max
S1,...,ST⊆V

T∑
t=1


∑
i∈S

ci − η |S| − λ
∑
i∈S

∑
j /∈S

Wij − µ
T∑
u=1

∑
i∈St∩Su

Ω−1tu︸ ︷︷ ︸
task sharing



Can also be mapped to a meta-network.

Code: http://github.com/chagaz/sfan
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Using task descriptors
PhD thesis of Víctor Bellón.
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Multiplicative Multitask Lasso with Task Descriptors
I Multitask Lasso [Obozinski et al. 2006]

argmin
β∈RT×p

L
(
ytm,

p∑
i=1

βig
t
mi

)
︸ ︷︷ ︸

loss

+ λ

p∑
i=1

||βi||2︸ ︷︷ ︸
task sharing

I Multilevel Multitask Lasso [Lozano and Swirszczw, 2012]

argmin
θ∈Rp

+,γ∈RT×p

L
(
ytm,

p∑
i=1

θiγ
t
ig
t
mi

)
︸ ︷︷ ︸

loss

+ λ1 ||θ||1︸ ︷︷ ︸
sparsity

+ λ2

p∑
i=1

T∑
t=1

|γti |︸ ︷︷ ︸
task sharing

I Multiplicative Multitask Lasso with Task Descriptors

argmin
θ∈Rp

+,α∈Rp×L

L
(
ytm,

p∑
i=1

θi

(
L∑
l=1

αild
t
l

)
gtmi

)
︸ ︷︷ ︸

loss

+ λ1 ||θ||1︸ ︷︷ ︸
sparsity

+ λ2

p∑
i=1

L∑
l=1

|αil|︸ ︷︷ ︸
task sharing
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Multiplicative Multitask Lasso with Task Descriptors

arg min
θ∈Rp

+,α∈Rp×L

L

(
ytm,

p∑
i=1

θi

(
L∑
l=1

αild
t
l

)
gtmi

)
︸ ︷︷ ︸

loss

+ λ1 ||θ||1︸ ︷︷ ︸
sparsity

+ λ2

p∑
i=1

L∑
l=1

|αil|︸ ︷︷ ︸
task sharing

I On simulations:
I Sparser solution
I Better recovery of true features (higher PPV)
I Improved stability
I Better predictivity (RMSE).
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Multiplicative Multitask Lasso with Task Descriptors

I Making predictions for tasks for which you have no data.

V. Bellón, V. Stoven, and C.-A. Azencott (2016) Multitask feature selection with task
descriptors, PSB.
https://github.com/vmolina/MultitaskDescriptor
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Limitations of current approaches

I Robustness/stability
Recovering the same SNPs when the data changes slightly.

I Complex interaction patterns
– Limited to additive or quadrative effects
– Some work on e.g. random forests + importance score.

I Statistical significance
– Computing p-values
– Correcting for multiple hypotheses.
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Further challenges

Privacy
I More data→ Data sharing→ ethical concerns

I How to learn from privacy-protected patient data?
S. Simmons and B. Berger (2016) Realizing privacy preserving genome-wide
association studies, Bioinformatics 32 (9), 1293–1300
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Further challenges

Heterogeneity
I Multiple relevant data sources and types

I Multiple (unknown) populations of samples.

Tumor heterogeneity Heterogeneous data sources

L. Gay et al. (2016), F1000Research
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Further challenges
Risk prediction
I State of the art: Polygenic Risk Scores

Linear combination of SNPs with high p-values (summary statistics)
Weighted by log odd ratios / univariate linear regression coefficients.

I More complex models slow to be adopted – reliability?
H.-C. So and P. C. Sham (2017) Improving polygenic risk prediction from
summary statistics by an empirical Bayes approach. Scientific Reports 7.
S. Okser et al (2014) Regularized machine learning in the genetic prediction of
complex traits. PLoS Genet 10.11: e1004754.
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Further challenges
Bioimage informatics
High-throughput molecular and cellular images

I Subcellular location analysis

I High-content screening

I Segmentation, tracking, registration.

BioImage Informatics http://bioimageinformatics.org/

Detecting cells undergoing apoptosis
32
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Further challenges
Electronic health records
I Clinical notes: incomplete, imbalanced, time series

I Combine text + images + genetics

I Assisting evidence-based medicine

R. Miotto et al. (2016) Deep Patient: An Unsupervised Representation to Predict the
Future of Patients from the Electronic Health Records Scientific Reports 6.

Machine Learning in Health Care http://mucmd.org/
Previously known as Meaningful Use of Complex Medical Data
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A few starting places

Data and Challenges
I DREAM Challenges: Crowdsourcing challenges for biology and
medicine http://dreamchallenges.org/

I Epidemium: Cancer research through data challenges
http://www.epidemium.cc/

I MIMIC: Deidentified electronic health records
https://mimic.physionet.org/

I BioImage Informatics Challenges
https://bii.eecs.wsu.edu/challenges/
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A few starting places

Workshops
I Machine Learning in Healthcare at NIPS

http://www.nipsml4hc.ws/

I Machine Learing in Computational Biology
https://mlcb.github.io/

I Machine Learning in Systems Biology http://mlsb.cc
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A few starting places

Basics in molecular biology
I Talk to specialists!

I The DNA Learning Center
https://www.dnalc.org/resources/

I Scitable eBooks
https://www.nature.com/scitable/ebooks
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https://github.com/chagaz/

source: http://www.flickr.com/photos/wwworks/
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