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Sequencing costs

Cost per Genome

Moore's Law

N I H National Human Genome
Research Institute

genome.gov/sequencingcosts

$1K
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Image sources: ajc1@ flickr; Zlir'a@wikimedia



THE CANCER GENOME ATLAS
National Cancer Institute

National Human Genome Research Institute

N
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g Cancer Genomics Hub

A resource of the National Cancer Institut

1000 Genomes

A Deep Catalog of Human Genetic Variati

DREAM Challenges







GWAS: Genome-Wide Association Studies
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Which genomic features explain the phenotype?

p=10° - 107 Single Nucleotide Polymorphisms (SNPs)
n=10% - 10* samples

High-dimensional (large p)
Low sample size (small n)



Missing heritability

GWAS fail to explain most of the inheritable variability of
complex traits.

Many possible reasons:
- non-genetic / non-SNP factors
- heterogeneity of the phenotype
~ rare SNPs
- weak effect sizes
- few samples in high dimension(p > n)
- joint.effets of multiple SNPs,



Is extracting knowledge
from such data doomed
from the start?







Integrating prior knowledge

Use prior knowledge as a constraint on the selected features

Prior knowledge can be represented as structure:
- Linear structure of DNA

- Groups: e.g. pathways

- Networks (molecular, 3D structure).

Original feature space = Constrained feature space

Elephant image by Danny Chapman @ Flickr.
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Reqularized relevance

Set V of p variables.
» Relevancescore R : 2¥ — R

Quantifies the importance of any subset of variables for the question
under consideration.

Ex : correlation, HSIC, statistical test of association.

» Structured regularizer Q) : 2V — R

Promotes a sparsity pattern that is compatible with the constraint on the
feature space.

Ex: cardinality Q2 : S +— |S|.

» Regularized relevance
arg max R(S) — AQ(S)
SQV
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Network-quided multi-locus GWAS

Goal: Find a set of explanatory SNPs compatible with a given
network structure.
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Network-quided GWAS
» Additive test of association SKAT [Wu et al. 2011]
RS)=> a a=X(y—p)
1€S
» Sparse Laplacian regularization
Q: 8 > Wi+alS|
€S j¢S
» Regularized maximization of R
arg max Zc, — |S] —A ZZVVW
SLY 1€S s €S y¢S
par5|ty N
association connect|VIty
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Minimum cut reformulation

The graph-regularized maximization of score ) () is equivalent to a s/t-min-cut for a
graph with adjacency matrix A and two additional nodes s and ¢, where A ;; = AW
for 1 <4,j < pand the weights of the edges adjacent to nodes s and ¢ are defined as

ASi:{ci—n ifc; >n and Ait:{n—q— ife; <n

0 otherwise 0 otherwise .

SConES: Selecting Connected Explanatory SNPs.
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Arabidopsis thaliana genotypes ‘

n=500 samples, p=1 000 SNPs
TAIR Protein- ProtP\n Interaction data ~ 50.10°
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SConES: Selecting Connected Explanatory SNPs

» selects connected, explanatory SNPs;
» incorporates large networks into GWAS;
» is efficient, effective and robust.

C-A. Azencott, D. Grimm, M. Sugiyama, Y. Kawahara and K. Borgwardt (2013) Efficient
network-guided multi-locus association mapping with graph cuts, Bioinformatics 29
(13),i171-i179 doi:10.1093/bioinformatics/btt238

https://github.com/chagaz/scones
https://github.com/chagaz/sfan
https://github.com/dominikgrimm/easyGWASCore
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Multi-trait GWAS

Increase sample size by jointly performing GWAS for multiple
related phenotypes

X n

Y21 >y = f(x. k)




Toxicogenetics / Pharmacogenomics

Tasks (phenotypes) = chemical compounds

Toxicogenetics Chemical
Challenge Data descriptors
10K attributes
Not Cytotoxicity
available data (EC,) -
Genotypes | RNASeq Training Set | 4 ?:h’
A
i =l ) s
= IS E
I 51 3]s
™ 106 chemicals € 5
lasi transcripts
Test Set
Mot Subchallenge 1 |-
ACTOET available

156 chemicals

F. Eduati, L. Mangravite, et al. (2015) Prediction of human population responses to toxic
compounds by a collaborative competition. Nature Biotechnology, 33 (9), 933-940 doi:
10.1038/nbt.3299



Multi-SConES

T related phenotypes.
» Goal: obtain similar sets of features on related tasks.

T
arg max Z Zci—n|8| —A szj—u|8t_1ASt|

S1,-,87CV ieS ies j¢s ok Sharing

SAS =(SuUS)H\(SNnS) (symmetric difference)
» (an be reduced to single-task by building a meta-network.

$ e
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Multi-SConES: Multiple related tasks
Simulations: retrieving causal features

Viodel 1
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Model 3 Single task Single task

M. Sugiyama, C-A. Azencott, D. Grimm, Y. Kawahara and K. Borgwardt (2014) Multi-task
feature selection on multiple networks via maximum flows, SIAM ICDM, 199-207
doi:10.1137/1.9781611973440.23

https://github.com/mahito-sugiyama/Multi-SConES
https://github.com/chagaz/sfan

21


https://github.com/mahito-sugiyama/Multi-SConES
https://github.com/chagaz/sfan

Using task similarity




Use prior knowledge about the relationship between the
tasks: 2 € RT*7

T
Lrgmxxz Zc,;fr]\5|f)\ZZI/V,jjf/1,Z Z O

S1,-81EVI T | es i€S j¢8 u=1i€8;NS,,

task sharing

Can also be mapped to a meta-network.

Code: http://github.com/chagaz/sfan
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http://github.com/chagaz/sfan

Using task descriptors

PhD thesis of Victor Bellon.



Multiplicative Multitask Lasso with Task Descriptors
» Multitask Lasso [Obozinski et al. 2006]

argmin L (ym Z,Bzgmz> + )\Z [18:ll5

BERTXP i=1 i=1

loss task sharing

» Multilevel Multitask Lasso [Lozano and Swirszczw, 2012]

p
argmin L <yfn, > wagfm> + M 1011, + Ao Z Z BH
=1

O€RY ,yERTXP i=1t=1

spar5|ty
loss task sharing

» Multiplicative Multitask Lasso with Task Descriptors

P
arg min L <yfn,20 <Z Oézldt> gml> + ALl0]]; + Az ZZ Jaii|
i=1

OERY ,acRPX L i=11=1

spar5|ty
loss task sharing



Multiplicative Multitask Lasso with Task Descriptors

argmin L <y;,29~ (2 azldt> g,m) 0l 42303 e

GERi,aERPXL i=1 i=1 =1
SparSIty

loss task sharing

» On simulations:

» Sparser solution

» Better recovery of true features (higher PPV)
» Improved stability

» Better predictivity (RMSE).
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Multiplicative Multitask Lasso with Task Descriptors

» Making predictions for tasks for which you have no data.

10
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—— Multitask AUC: 0.45+0.0033
0.2 —— Multilevel AUC: 0.47 £0.01
——— Sparse AUC: 0.46 +0.0037
Multiplicative AUC: 0.61 +0.004
/ —— Lasso AUC: 0.5+0.0021
0.0
0.0 0.2 0.4 0.6 0.8 1.0

False Positives

V. Belldn, V. Stoven, and C-A. Azencott (2016) Multitask feature selection with task
descriptors, PSB.
https://github.com/vmolina/MultitaskDescriptor
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Limitations of current approaches

» Robustness/stability
Recovering the same SNPs when the data changes slightly.

» Complex interaction patterns

- Limited to additive or quadrative effects
- Some work on e.g. random forests + importance score.

» Statistical significance

- Computing p-values
- Correcting for multiple hypotheses.

28



Further challenges

Privacy

» More data — Data sharing — ethical concerns

» How to learn from privacy-protected patient data?

S. Simmons and B. Berger (2016) Realizing privacy preserving genome-wide
association studies, Bioinformatics 32 (9), 1293-1300




Further challenges

Heterogeneity
» Multiple relevant data sources and types

» Multiple (unknown) populations of samples.

metabolome proteome

: 3jc1@ flickr; Zlira@wikimedia

Tumor heterogeneity Heterogeneous data sources
L. Gay et al. (2016), F1000Research
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Further challenges

Risk prediction

» State of the art: Polygenic Risk Scores
Linear combination of SNPs with high p-values (summary statistics)
Weighted by log odd ratios / univariate linear regression coefficients.

» More complex models slow to be adopted - reliability?
H-C. So and P. C. Sham (2017) Improving polygenic risk prediction from
summary statistics by an empirical Bayes approach. Scientific Reports 7.

S. Okser et al (2014) Regularized machine learning in the genetic prediction of
complex traits. PLoS Genet 10.11: e1004754.

> 4%
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Further challenges

Bioimage informatics
High-throughput molecular and cellular images

» Subcellular location analysis
» High-content screening
» Segmentation, tracking, registration.

Biolmage Informatics http://bioimageinformatics.org/

p -
s ¥ . 2
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Further challenges

Electronic health records
» Clinical notes: incomplete, imbalanced, time series

» Combine text + images + genetics
» Assisting evidence-based medicine

R. Miotto et al. (2016) Deep Patient: An Unsupervised Representation to Predict the
Future of Patients from the Electronic Health Records Scientific Reports 6.

Machine Learning in Health Care http://mucmd.org/
Previously known as Meaningful Use of Complex Medical Data
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A few starting places

Data and Challenges

» DREAM Challenges: Crowdsourcing challenges for biology and
medicine http://dreamchallenges.org/

» Epidemium: Cancer research through data challenges
http://www.epidemium.cc/

» MIMIC: Deidentified electronic health records
https://mimic.physionet.org/

» Biolmage Informatics Challenges
https://bii.eecs.wsu.edu/challenges/
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A few starting places

Workshops

» Machine Learning in Healthcare at NIPS
http://www.nipsml4hc.ws/

» Machine Learing in Computational Biology
https://mlcb.github.io/

» Machine Learning in Systems Biology http://mlsb.cc
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A few starting places

Basics in molecular biology
» Talk to specialists!

» The DNA Learning Center
https://www.dnalc.org/resources/

» Scitable eBooks
https://www.nature.com/scitable/ebooks
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CBIO: Victor Bellon, Yunlong Jiao, Véronique Stoven, Athénais Vaginay,
Nelle Varoquaux, Jean-Philippe Vert, Thomas Walter.

MLCB Tiibingen: Karsten Borgwardt, Aasa Feragen, Dominik Grimm, Theofanis
Karaletsos, Niklas Kasenburg, Christoph Lippert, Barbara Rakitsch, Damian Roqueiro,
Nino Shervashidze, Oliver Stegle, Mahito Sugiyama.

MPI for Intelligent Systems: Lawrence Cayton, Bernhard Scholkopf. x
MPI for Developmental Biology: Detlef Weigel.
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