Learning to act by predicting the future

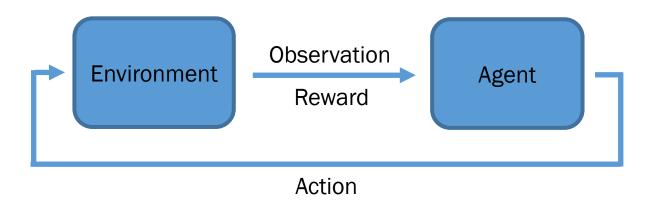
Alexey Dosovitskiy and Vladlen Koltun Intel Labs, Santa Clara

ICLR 2017, Toulon, France

Sensorimotor control

Aim: produce useful motor actions based on sensory inputs

Reinforcement Learning Formalism



• Aim: maximize the (discounted) sum of future rewards

Training signal

• Standard RL: scalar reward

• Reality: rich sensory stream

Goals

• Standard RL: a single goal given by the reward

• Reality: a wide variety of potential goals

Training procedure

Standard RL: maximize future discounted reward

Reality: learn about the world

Recent related work

- Training signal
 - Jaderberg et al., ICLR 2017
- Goals
 - Schaul et al., ICML 2015
- Training procedure
 - Exploration & intrinsic motivation
 - Osband et al. 2016, Osband et al. 2017, Houthooft et al. 2016, Fu et al. 2017, Bellemare et al. 2016, Usunier et al. 2016, Sukhbaatar et al. 2017, Gregor et al. 2016, ...

Direct future prediction

• Control as "future-supervised" learning

• Instead of learning to maximize returns, learn to predict the future

How to represent the future?

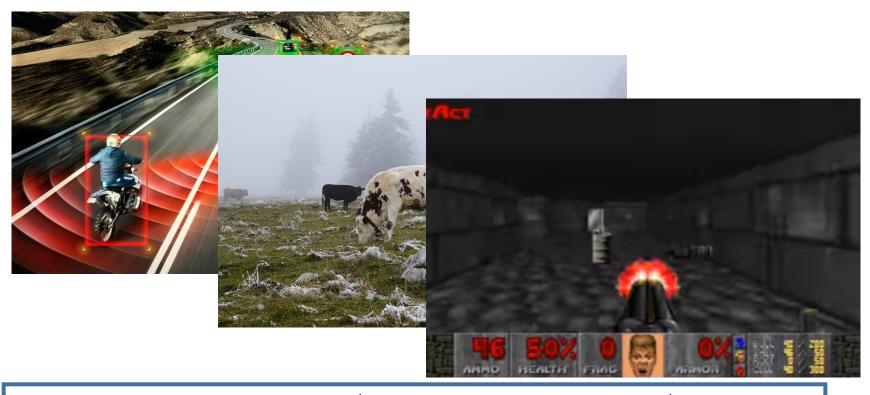
Naïve approach: predict pixels

- Simply predict the future observation
 - Oh et al. 2015, Finn et al. 2016, Chiappa et al. 2017, ...
- Problem: uncertainty!

We only need to predict relevant values

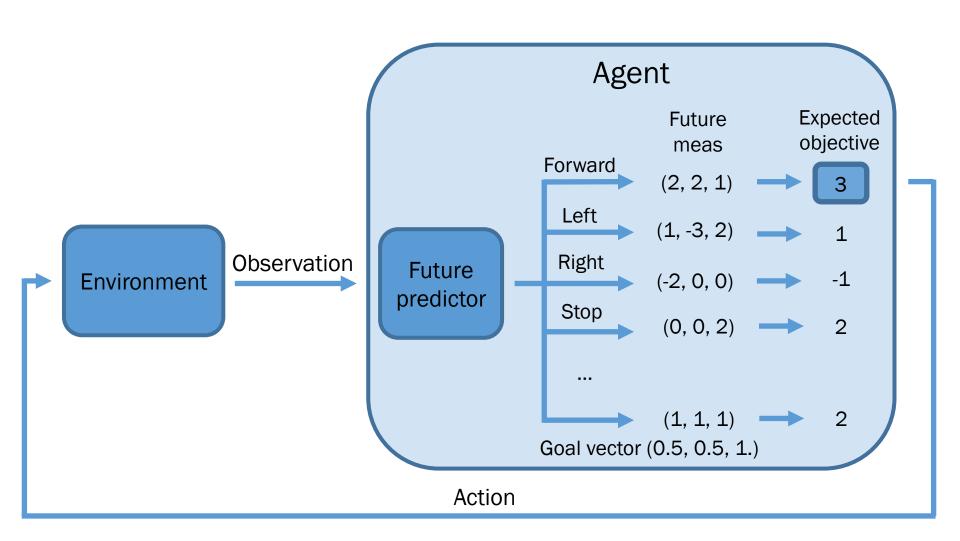
Our approach: predict measurements

 Predict the future values of measurements available to the agent



• Assumption: goals (objective functions) can be expressed as functions of measurements

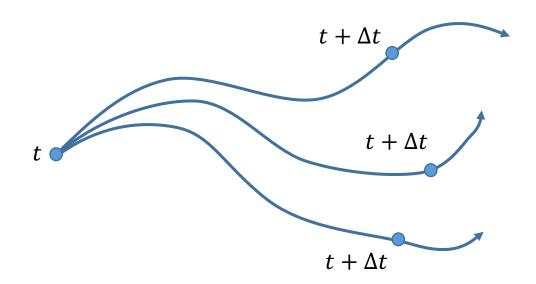
Using future predictions to act



Objective is linear in future measurements

Direct future prediction

- Predict the future measurements for each action
- Simple supervised learning



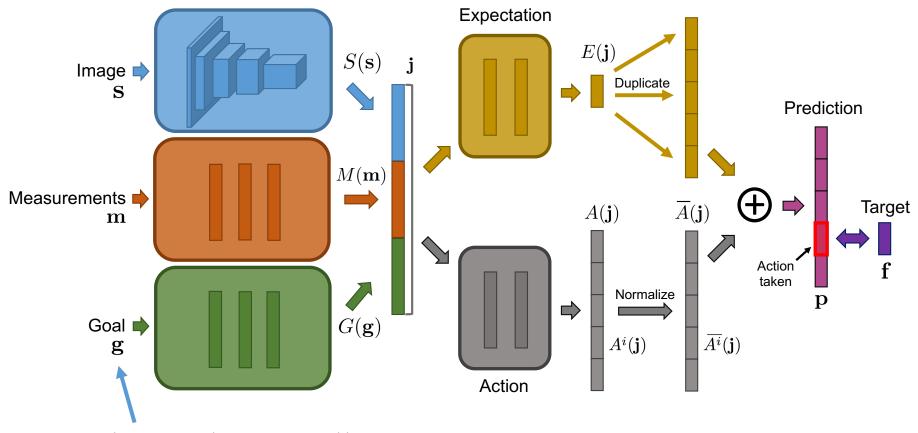
• The future is stochastic

Predict expectations

• ... and depends on the future actions

On-policy

Network architecture



Can change dynamically!

Technical details

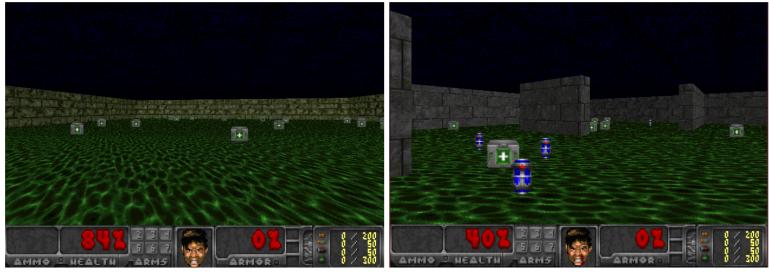
- One frame as input, no memory
- Predict multiple future steps: 1,2,4,8,16,32
- Epsilon-greedy policy
- Small experience replay
- Parallel exploration 8 copies of the agent

Experiments: ViZDoom environment

- Based on Doom
- Natural measurements: ammo, health, frags
- Wide variety of tasks and scenarios



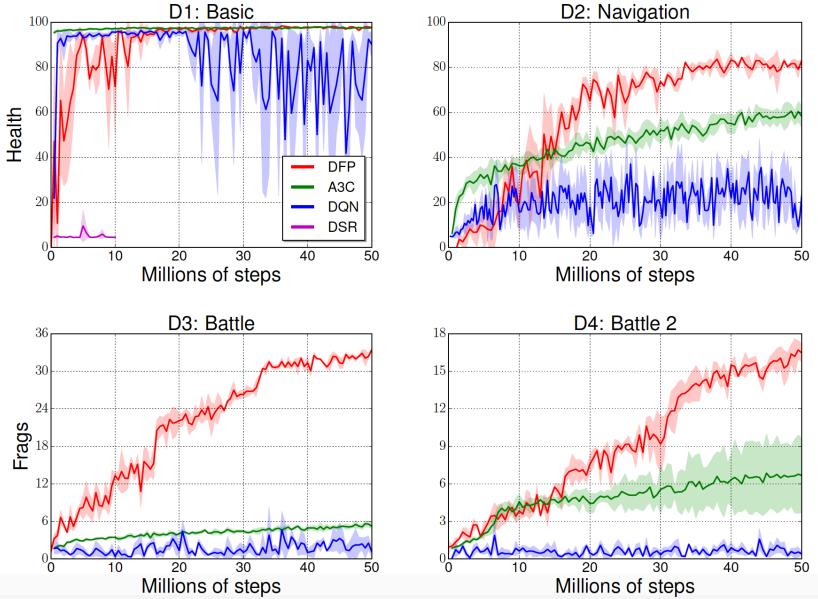
ViZDoom – tasks



D1: Basic D2: Navigation

D3: Battle D4: Battle 2

Comparison to existing methods



Learning to Act by Predicting the Future

Alexey Dosovitskiy Vladlen Koltun

Generalization

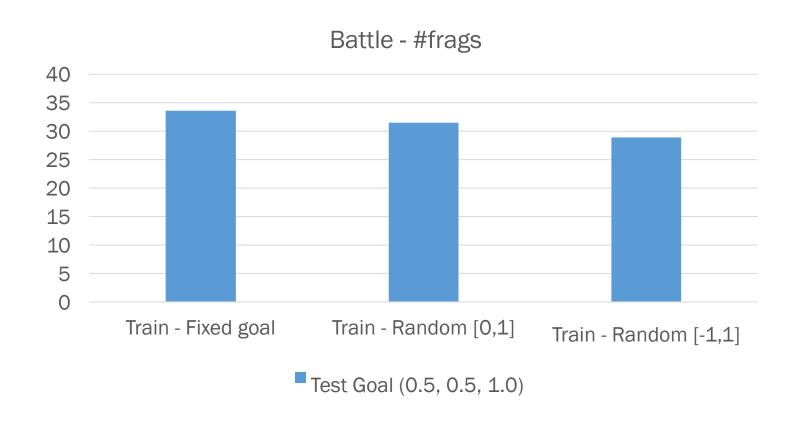
This was testing on the training set

Can we generalize?

Generalization across goals

- Train with a random goal vector in every episode
 - Uniform [0,1]
 - Uniform [-1,1]
- Change the goal vector at test time
 - The end goal does not have to be known at training time!

Generalization across goals

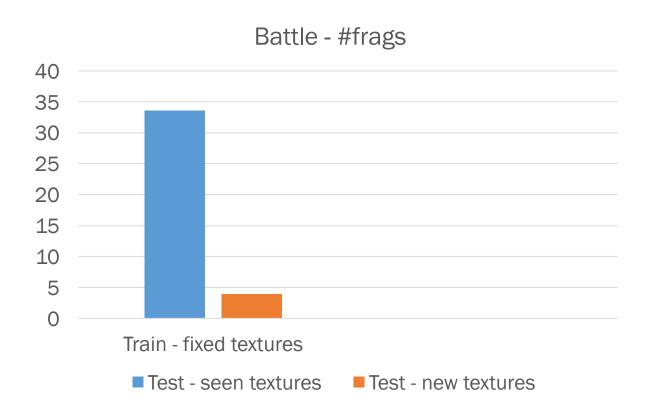


- Goal-agnostic training performs very close to training with a fixed goal
- Generalizes to different goals much better

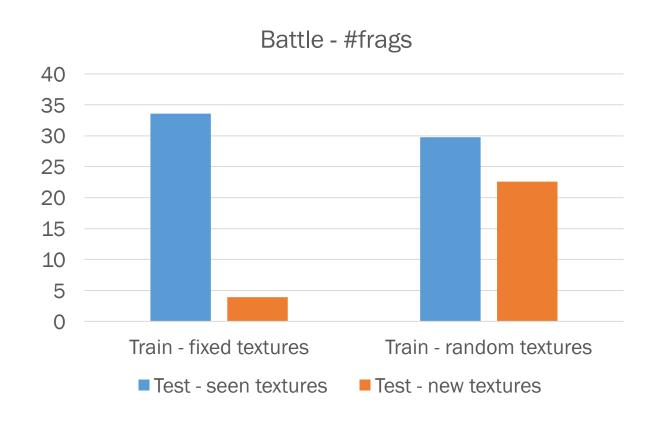
Generalization across environments

• Train with randomized textures

Generalization across environments



Generalization across environments



 Good generalization to previously unseen textures and labyrinth layouts

ViZDoom Competition: Full Deathmatch

Place	Team	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	IntelAct	29	21	23	21	6	11	9	6	30	32	33	35	256
2	The Terminators	22	17	21	15	13	12	6	5	14	13	13	13	164
3	тино	8	11	13	12	0	-1	-1	-4	2	2	6	3	51
4	ColbyCS	2	4	0	1	-1	0	-1	0	3	3	4	3	18
5	5vision	3	0	4	2	1	0	1	0	0	-1	1	1	12
6	Ivomi	3	0	1	0	1	-1	-4	-4	1	1	0	0	-2
7	PotatoesArePrettyOk	0	0	2	0	-1	-3	-1	0	-2	-1	-1	-2	-9

Summary

 Simple finite-horizon supervised training performs very well on visuomotor control tasks

- Predicting measurements instead of rewards:
 - Better training signal
 - Flexible goal setting, goal-agnostic learning

 Training with random textures leads to good generalization across environments

The end

More details in our poster yesterday!

Code: https://github.com/IntelVCL/DirectFuturePrediction
Includes our environments and pre-trained models

Videos: IntelVCL youtube channel

