Multi-Agent Cooperation and the Emergence of (Natural) Language

Angeliki Lazaridou, Alex Peysakhovich, Marco Baroni

Humans + machines have to accomplish tasks together...

...so they need to communicate

Structure of language (Most of NLP)

Structure of language (Most of NLP)

Function of language (Our question)

"Learning by pointing at stuff"

Existing Machinery

- This is an instance of signaling games (Lewis 1969; Crawford & Sobel 1982)
 - Many Nash equilibria some involve information transmission others don't
 - Not clear that learning will converge to Nash equilibria (either at all or in reasonable amounts of time)
- Used to study language evolution in the past (Briscoe, 2002; Cangelosi & Parisi, 2002; Spike et al., 2016; Steels & Loetzsch, 2012)
 - ...earlier studies much simpler (small language, small signal space, more theoretical)
 - ...earlier studies are about studying existing language, not building new agents (Das et al. 2017; Mordatch & Abeel 2017; Jorge et al. 2016; Bordes et al. 2017)

Experiment 1

- Targets = 463 McRae et al. (2005) concepts, 100 random samples of each from ImageNet
 - Target representations: pre-trained VGG conv net (Simonyan & Zisserman 2014) use either softmax layer (1000d) or fully connected layer (4096d)

Agnostic Sender (feed forward)

 Input image vectors, apply 1 layer of transformations, concatenate vectors, softmax on top

Informed Sender (special conv net)

 Input image vectors, apply 1d convolution, softmax on top (intuition: inductive bias towards combining images dimension by dimension)

Receiver

 Input image vectors + symbol from Sender, compute embedding for symbol, dot product with 1 layer transform of image vectors, choose image with higher dot product

Ok agents learn to communicate but what is the language like?

Experiment 1 Language Descriptions

```
purity (%)
                                     comm
                       symbols success (%)
                                                             purity (%)
agnostic
                 100
                                                                 15
           sm
                                      99
99
                                                                 15
agnostic
           fc
                 10
                                                    20
                                                                 15
                 10
agnostic
           sm
                                                                 15
                 100
agnostic
```

Assign most frequently sent symbol for each object, cluster objects by high level McRae category.

Purity = (% Symbols in Cluster == Majority Symbol of Cluster)

Measure of relationship of conceptual semantics and developed linguistic ones

Experiment 1 Language Descriptions

id	sender	vis	voc	used	comm	purity (%)	obs-chance
		rep	size	symbols	success (%)		purity (%)
1	informed	sm	100	58	100	46	27
2	informed	fc	100	38	100	41	23
3	informed	sm	10	10	100	35	18
4	informed	fc	10	10	100	32	17
5	agnostic	sm	100	2	99	21	15
6	agnostic	fc	10	2	99	21	15
7	agnostic	sm	10	2	99	20	15
8	agnostic	fc	100	2	99	19	15
,	•		•				•

Assign most frequently sent symbol for each object, cluster objects by high level McRae category.

Purity = (% Symbols in Cluster == Majority Symbol of Cluster)

Measure of relationship of conceptual semantics and developed linguistic ones

Experiment 1 Language Descriptions

id	sender	vis	voc	used	comm	purity (%)	obs-chance
		rep	size	symbols	success (%)		purity (%)
1	informed	sm	100	58	100	46	27
2	informed	fc	100	38	100	41	23
3	informed	sm	10	10	100	35	18
4	informed	fc	10	10	100	32	17
5	agnostic	sm	100	2	99	21	15
6	agnostic	fc	10	2	99	21	15
7	agnostic	sm	10	2	99	20	15
8	agnostic	fc	100	2	99	19	15
							
						I	

Result 1

Agnostic sender + receivers coordinate on "low level" language, informed senders evolve different language Assign most frequently sent symbol for each object, cluster objects by high level McRae category.

Purity = (% Symbols in Cluster == Majority Symbol of Cluster)

Measure of relationship of conceptual semantics and developed linguistic ones

Can we make the languages more high level?

More Game Theory

- Common Knowledge = things everyone knows and everyone knows that everyone knows and everyone knows that everyone knows that everyone knows, etc...
- Can't coordinate on things that aren't common knowledge! (Rubinstein 1989)
- Idea: Remove common knowledge of patterns we don't want evolved language to have

Experiment 2

Visual & Linguistic Space

Point = average visual representation of each concept Color = which symbol is used to refer to it

S/R see same images

S/R see same concept

It kinda, sorta, works!

What about humans?

Experiment 3

- Sender does both supervised task (label ImageNet images) and referential game task
- Key Point: We use a different images+concepts for communication task (ReferIt) and labeling task (ImageNet)
- Communication accuracy still perfect

+ Humans

- Give humans real pairs of images from ReferIt set + word that sender output (~300 pairs, 10 ratings per pair)
- Task: Which of these two images is most related to this word? (Humans play R) - 68% correct rate

Conclusion

- Language serves a coordinating function, hard to learn language in a vacuum
- Referential games provide nice testbed for evolving languages
- Neural nets will solve problems you put in front of them (but perhaps the "wrong" way)- need to craft environment if you want language to reflect human semantics

Snork!

(Thank you)