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Environment Physiology Perception

• How do populations of neurons extract/represent visual information?

• How is this matched to, or optimized for, our visual environment?

• How do these representations enable/limit perception?

• What new principles may be gleaned from these representations, and 
applied to engineered imaging or vision systems?
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Visual texture

Homogeneous, with repeated structures

“Let us say that to the extent that visible objects are different and far apart, 
they are forms. To the extent that they are similar and congregated they are 
a texture. A man has form; a crowd has man-texture. A leaf has form; an 
arbor has leaf texture, and so on.” 

[Lettvin, 1976]



Julesz's conjecture (1962)
Two textures with identical Nth-order pixel statistics 
will look the same (for some N).

• Explicit goal of capturing perception with a 
statistical model

• Statistical measurements should be:
• stationary (translation-invariant)
• universal (sufficient for all textures)
• a minimal set (necessary and sufficient)

Hand-constructed counter-examples (N=3):

Julesz ‘78 Yellott ‘93 
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Statistics: Correlations across position, orientation, scale.
    ... 710 measurements

Physiologically-inspired 
Julesz-style texture model

[Portilla & Simoncelli, IJCV 2000]



Synthesis-based experimental test

If model captures the same properties as the brain, images 
with identical model responses should appear identical to 
a human. 
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(more at  www.cns.nyu.edu/~lcv/texture/ ) [Portilla & Simoncelli, IJCV 2000]

http://www.cns.nyu.e
http://www.cns.nyu.e


Deep Neural Networks are Easily Fooled... 
Nguyen, Yosinski, Clune CVPR 2015

Note: analogous synthesis from deep ConvNets  
produces “fooling images” 
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Also: Adjusting an initial image to attain a deep convNet target 
category leads to “adversarial examples”
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Figure 5: Adversarial examples generated for AlexNet [9].(Left) is correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be a “ostrich, Struthio
camelus”, which is fast-running African flightless bird with two-toed feet, largest living bird. Average distortion
based on 64 examples is 0.006508.

increasing the robustness and convergence speed of the models [9, 13]. These deformations are,
however, statistically inefficient, for a given example: they are highly correlated and are drawn from
the same distribution throughout the entire training of the model. We propose a scheme to make this
process adaptive in a way that exploits the model and its deficiencies in modeling the local space
around the training data.

We make the connection with hard-negative mining explicitly, as it is close in spirit: hard-negative
mining, in computer vision, consists of identifying training set examples (or portions thereof) which
are given low probabilities by the model, but which should be high probability instead, cf. [5]. The
training set distribution is then changed to emphasize such hard negatives and a further round of
model training is performed. As shall be described, the optimization problem proposed in this work
can also be used in a constructive way, similar to the hard-negative mining principle.

4.1 Formal description

We denote by f : Rm �! {1 . . . k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by loss

f

:

Rm ⇥ {1 . . . k} �! R+. For a given x 2 Rm image and target label l 2 {1 . . . k}, we aim to solve
the following box-constrained optimization problem:

• Minimize krk2 subject to:

1. f(x+ r) = l

2. x+ r 2 [0, 1]

m

The minimizer r might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(x, l). Informally, x + r is the closest image to x classified as l by f . Obviously,
D(x, f(x)) = f(x), so this task is non-trivial only if f(x) 6= l. In general, the exact computation
of D(x, l) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(x, l) by performing line-search to find the minimum c > 0 for which
the minimizer r of the following problem satisfies f(x+ r) = l.

• Minimize c|r|+ loss
f

(x+ r, l) subject to x+ r 2 [0, 1]

m

4.2 Experimental results

Our “minimimum distortion” function D has the following intriguing properties, which we will
demonstrate with qualitative and quantitative experiments in this section:
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Intriguing properties of neural networks
Szegedy et. al. arXiv 2014
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Analogous auditory texture model

[figure: Sensation & Perception, 2015]

Cochlea
[Ruggero, 92; 
Joris, et al 04]

IC/MGN
[Bauman et al 11;

Rodriguez et al 10]

Correlation statistics

[McDermott & Simoncelli,  Neuron 2011]
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[McDermott & Simoncelli,  Neuron 2011]
(see  mcdermottlab.mit.edu/texture_examples/)

http://www.cns.nyu.e
http://www.cns.nyu.e


“Biological” model choices 
do matter
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[McDermott & Simoncelli,  Neuron 2011]

Human perception:
which sounds more “real”?



Family discrimination
Which sound was produced by a different source?

Sample discrimination
Which sound was different from the other two?

Auditory texture discrimination depends on duration
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Auditory texture discrimination depends on duration
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[McDermott & Simoncelli,  Nature Neuro 2014]

Interpretation: auditory system is forced into “summary 
mode” for dense long-duration stimuli



What about non-texture 
(inhomogeneous) images?

Can we make the model 
more physiological?



Retina

[Freeman & Simoncelli 2011, 
macaque data from  Gattass et. al., 1981; Gattass et. al., 1988; Perry et. al., 1984]

RF sizes grow with eccentricity
(distance from fovea)



V1 V2 V4 IT

V1

V2

V4

IT

[Freeman & Simoncelli, 2011]

In cartoon form:
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[Freeman & Simoncelli, 2011]







[Allman & Kaas, 1971; Allman & Kaas, 1974; Gattass et.al., 1981; van Essen et.al., 1984; 
Maguire & Baizer, 1984; Burkhalter & van Essen, 1986;  Gattass et.al., 1987; Desimone & 
Schein, 1987; Gattass et.al., 1988; Cavanaugh et. al., 2002]

Macaque
Physiology 

[Freeman & Simoncelli, 2011]

Human
Perception 



Reading

b

c

a Figure 7. Effects of crowding 
on reading and searching. 
(a) Two metamers, matched 
to the model responses of a 
page of text from the first 
paragraph of Herman 
Melville’s “Moby Dick”. Each 
metamer was synthesized 
using a different foveal 
location (the letter above each 
red dot). These locations are 
separated by the distance 
readers typically traverse 
between fixations49. In each 
metamer, the central word is 
largely preserved; farther in 
the periphery the text is 
letter-like but scrambled, as if 
printed with non-latin 
characters. Note that the 
boundary of readability in the 
first image roughly coincides 
with the location of the fixation 
in the second image. We 
emphasize that these are 
samples drawn from the set of 
images that are perceptually 
metameric; although they 
illustrate the kinds of 
distortions that result from the 
model, no single example 
represents “what an observer 
sees” in the periphery. (b) The 
notoriously hard-to-find 
“Waldo” (character with the 
red and white striped shirt) 
blends into the distracting 
background, and is only 
recognizable when we (or the 
model) look right at him. 
Cross-hairs surrounding each 
image indicate the location of 
the model fovea. (c) A soldier 
in Afghanistan wears 
sandy-stone patterned 
clothing to match the stoney 
texture of the street, and 
similarly blends into the 
background.

[Freeman & Simoncelli, 2011]



“Perhaps texture, somewhat redefined, is 
the primitive stuff out of which form is 
constructed”

[Lettvin, 1976]

Linear filtering, rectification, local statistics ....

Can this really explain all of vision?



Synthesis provides a powerful test of representation

Shallow hierarchical models with biological attributes 
are more powerful than expected

• can be used to verify invariances
• can also be used to verify metric properties 
   - distance/curvature   (ICLR16)
   - perceptual quality   (Cosyne17)

How can we learn representations (unsupervised)?
   - compression (next talk!)
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