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• Geometrical structure of minima in non-convex random 
optimization and learning problems
• Clustering and symmetry breaking

• The Local Entropy Measure reveals the existence of subdominant high local 
density regions in weight space.

• Accessibility and Local Bayesian predictions

• Algorithms from a local entropy measure

• The Robust Ensemble: an “out-of-equilibrium” measure

• Real replicas algorithms: MCMC,SGD and Belief Propagation

• Connections with DNNs

• …

Plan of the talk



What makes a constraint satisfaction problem or a  learning problem 
extracted from a natural distribution hard to solve? 

Basic example: Random K-SAT

• Let                      be the set of all                   possible K-clauses on 

• Select uniformly, independently and with replacements                         clauses 

from                        to generate a K-cnf formulaCK(N) FN (K,α)

M = αN

2
K

(

N

K

)

CK(N)

Question: does                           have a truth assignment?FN (K,α)

F = (x1 ∨ x27 ∨ x̄3) ∧ (x̄11 ∨ x3 ∨ x2) ∧ ... ∧ (x9 ∨ x̄8 ∨ x̄30)

x1, x2, ..., xN



Factor Graphs for  CSPs
Combinatorial Optimzation Problems

• N discrete variables               , e.g., Boolean, spins, colors

• Constraints                                       involving vars

Global cost function:  

{xi}

Etot =
∑

a

Ea[{xi(a)}]

- Physics: average properties

- Computer Science: single instance properties

{xi(a)}Ea , a = 1, ..., M

Ea =

{

0 if {xi(a)} satisfy constraint
1 otherwiselog N

P(c)= (3! )
c

c!

e
!3!

Cost/Energy function:

Ea = (xi1 ∨ x̄i2 ∨ xi3)
E =

↵NX

a=1

Ea[{x{i(a)}]

M = ↵N



Threshold: SAT threshold conjecture (3/22)

The SAT threshold conjecture. For each k 2,
random k-SAT has a sharp satisfiability threshold ↵sat.

increasing ↵

P SAT
with n 21

P SAT 1
as n

P UNSAT 1
as n

with k fixed

— that is, a single critical value ↵sat separates SAT UNSAT
(with high probability in the limit n ; fixed k)

E0 = 0

E0 > 0

↵ =
M

N
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αd

αK

αhard

αpack, αunsol, αuncol

αuncol(3) = 2.355 αuncol(4) = 4.45

αd(3) = 2 αK(3) = 2 αhard(3) = 2.315
αd(4) = 4.175 αK(4) = 4.23 αhard(4) = 4.365

Geometry of solutions in random  Constraint Satisfaction Problems: 
Gibbs measure decomposition

Finding isolated solutions is hard. In the last 15 years many physicists, mathematicians and CS 
have contributed to various aspects of these results … the scenario is by now rigorously established
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FIG. 1. Qualitative sketch of the mean-field predictions for the p−state Potts glass model
with p > 4. The spin glass order parameter in thermal equilibrium is positive only for T < T0

and jumps to zero discontinuously at T = T0, where the spin glass susceptibility χSG is finite (for

T > T0, χSG follows a Curie-Weiss type relation with an apparent divergence at Ts < T0). The
relaxation time diverges already at the dynamical transition temperature TD. This divergence is

due to the occurrence of a long lived plateau in the time-dependent spin autocorrelation function
C(t).
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FIG. 2. Spin-spin autocorrelation function C(t) for T = 1.8 and for T = TD = 1.142 [11], for

several values of N . The solid line is the theoretical value of the Edward-Anderson order parameter
qEA(TD) for N → ∞ [11]. The dashed line locates the value we use to define the relaxation time
τ .
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when problems are supposed to be difficult?

statistical mechanics of pure states

1

N
log(N (c))

c =
C
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Gibbs measure decomposition

RS: 

1RSB-d: 

1RSB-s: 

N = e⌃N

N = sub-exp
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Gibbs measure decomposition & geometry of solutions 

Cavity solution for
random K-SAT

values of ! at !d " 3.921 and !c " 4.256.
For ! # !d, the solution is of a paramagnetic
type [all the surveys equal $(u)], a generic
instance is satisfiable, and the solution can be
found even by a simple zero-temperature Me-
tropolis algorithm ( ZTMA) (32). For !d #
! # !c, the space of configurations breaks up
into many states, and there exists a nontrivial
complexity (33). Some of the states have zero
energy; therefore, we are still in the SAT
phase. It can be argued that algorithms like
ZTMA will generically get trapped into the
most numerous states, which have an exten-
sive (proportional to N) energy Eth.

At ! % 4.2 we find analytically Eth "
0.0036N, and we have checked that ZTMA
converges to a similar value of energy. The
fact that eth % Eth/N is small explains the
good performance of smarter algorithms on
instances involving a few thousand variables.
At ! & !c, the system is in its UNSAT phase,
and the lowest possible energy is positive.
The phase diagram is summarized in Fig. 2.
Survey propagation algorithm. We

now consider one given instance (31), that is,
one fixed large graph. We have seen experi-
mentally that in the glassy region ! & !d, the
standard (y % 0) iteration of cavity biases
either ceases to converge or converges to the
trivial paramagnetic solution where all
ua3i % 0. If i is the rth site connected to the
function node a, we introduce a survey
Q a3i

(y) (u) % 'a3i$(u) ( (1 ) 'a3i)$(u ( J a
r)

that is characterized by the single number
'a3i. The survey propagation of Eq. 3 per-
formed with random sequential updating is a
message-passing procedure that defines a dy-
namical process in the space of the KN vari-
ables 'a3i. We have implemented it on large
random instances in the hard part of the SAT
phase, with ! " 4.2 to 4.25, using a suffi-
ciently large value of y (typically y " 4 to 6).
The process is found to converge to a unique
nontrivial solution. We expect that this sur-
vey propagation technique can be of interest
in many problems of statistical inference.

The set of all surveys Q a3i
(y) (u) found after

convergence provides a nontrivial informa-
tion on the structure of the states. From all the
surveys sent onto one site i, we reconstruct
through a reweighted convolution (34) the
probability distribution of local fields on this
site, Pi(H). This is a distribution on integers
[Pi(H) % *r$(H ) r)w i

r]. The total weight
wi

( % *r%1
+ wi

r of Pi(H) on positive integers
gives the fraction of zero-energy states where
si % 1; similarly, the total weight wi

) %
*r%)+

)1 wi
r of Pi(H) on negative integers gives

the fraction of zero-energy states where si %
)1. We have checked numerically, on single
instances with N % 10,000, that these frac-
tions predicted from survey propagation
agree with those obtained by averaging on a
few hundreds of ground states.
A decimation algorithm. This informa-

tion can be exploited to invent new types of
algorithms (31) or to improve existing ones.
We have worked out one such application,
the survey inspired decimation (SID), which
shows promising performance, but other al-
gorithms probably could be found using the
same type of information. Given an instance,
we first compute all the surveys by the survey
propagation algorithm with a sufficiently
large value of y (e.g., y % 6). Then we deduce
the distribution of local fields, and in partic-
ular their weights wi

, on positive and nega-
tive integers. We then fix the variable i with
largest !wi

( ) wi
)
! to the value si %

Sign(wi
( ) wi

)). Satisfied clauses are elim-
inated, and unsatisfied K-clauses involving i
are transformed into K ) 1 clauses, leading to
a new instance with a reduced number of
variables (and of clauses). The surveys can be
propagated again on this new instance (start-
ing from the previous ones) until conver-
gence, and the procedure is iterated. When-
ever a paramagnetic state is found (signaled
by all 'a3i % 1) or at some intermediate
steps, a rapid search process like simulated
annealing at a fixed cooling rate is run.

This SID algorithm has been tested suc-
cessfully on the largest (up to N % 2000)
existing benchmarks (9) of random 3sat

instances in the hard regime. Satisfying
assignments have been found for all bench-
marks. We have applied the SID to much
larger instances, increasing N up to N %
105 at a fixed ! % 4.2. The algorithm is
very efficient: It always finds a SAT con-
figuration, and its apparent complexity
scales like N2, although more systematic
studies with higher statistics will be neces-
sary to establish this behavior. For the very
same large instances, the only existing al-
gorithm able to find solutions, at a consid-
erable computational cost, is a highly opti-
mized version of the walksat algorithm (9,
35).
Conclusions. We have proposed an ana-

lytical method that predicts quantitatively the
phase diagram of the random 3sat problem in
the limit of infinite number of clauses and
opens the way to other types of algorithms. The
existence of an intermediate phase with many
metastable states close to the SAT-UNSAT
transition explains the slowing down of algo-
rithms in this region. We would like to stress
that the solution we propose is typical of a
“one-step replica symmetry-breaking” solution,
as it is called in spin glasses (10). All the
consistency checks of the analytic results lead
us to believe that this solution is exact for the
3sat problem. From the strict mathematical
point of view, the phase diagram we propose
should be considered as a conjecture, as for the
great majority of the theoretical results in sta-
tistical physics. Our computation implies that a
way to provide a fully rigorous proof of the
transition behavior in random Ksat problems
could be based on the study of the decomposi-
tion of the probability measure into states en-
dowed with the clustering property (36). On the
other hand, the predictions of our theory can be
compared with numerical experiments, and our
first such tests have confirmed its validity. On
the basis of the analytical study, our algorithm
looks promising in that it can solve large in-
stances exploring a rather small number of spin
configurations. It will be interesting to explore
its application to other optimization problems.
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Fig. 2. The phase diagram of the
random 3sat problem. Plotted is
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K αd α(0)
d αs αc α(1)

c α(2)
c α(7)

c

3 3.927 ± 0.004 3.923 4.15 4.267 4.699 4.546 4.307

4 8.297 ± 0.008 8.303 9.08 9.931 10.244 10.104 9.938

5 16.12 ± 0.02 16.117 17.8 21.117 21.334 21.223 21.118

6 30.50 ± 0.03 30.479 33.6 43.37 43.515 43.434 43.372

7 57.22 ± 0.06 57.186 62.5 87.79 87.876 87.821 87.785

8 107.24 ± 0.08 107.191 176.599 176.563 176.543

9 201.35 ± 0.1 201.276 354.045 354.022 354.010

10 379.10 ± 0.1 379.004 708.936 708.922 708.915
Table 1
Threshold values for random K-SAT. Bold numbers are the results of the population
dynamics algorithm. α(0)

d is the value predicted by the first moment expansion of
the cavity equations (sec. 6.3), α(r)

c is the result of a series expansion in ε = 2−K of
the cavity equations up to order r (secs. 6.2 and A). Note that all reported values
αc(K) fall between the best rigorously known upper and lower bounds.

Table 1 shows the results. Since αc for K = 3 is the most “prominent” thresh-
old we spent a bit more CPU power to increase its accuracy. Currently our
best estimate is

αc(3) = 4.26675± 0.00015 (43)

The errorbars in table 1 and in Eq. (43) are given by ±2σ, where σ is the
empirical standard deviation as measured by different runs of the population
dynamics algorithm (see Fig. 5) with fixed N and T . The quoted values of αc

are the empirical averages over different runs. The simulations show that the
averages are not very sensitive to the value of N . The errorbars on the other
hand get smaller with increasing N .

5.4 Stability

Using the population of φ and x variables obtained in the population dynamics,
one can check the stability of this 1-RSB solution. In all cases we find that
for α ≤ αc the solution is stable to iteration. As for the bug proliferation
stability, we estimate its location by considering the value of µd defined in
(24). In Fig.6 we plot ln µd versus d for the case K = 4, for various values
of α. The behaviour is well approximated by a linear function. Using a linear
regression, we estimate the slope and plot it as function of α, as shown in
Fig. 7. In this way we estimate the limit of stability of the 1-RSB solution to:
αs(4) ≃ 9.08. The values of αs(K) for K = 3, . . . , 7 are shown in Tab. 1.
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44 Chapitre 2. Approche physique de la complexité
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Fig. 2.4: Les deux cas de figures décrits dans le texte. Dans le panneau de gauche (a),
l’apposition d’une droite de pente −1 à la courbe de complexité donne le point-col s ∗(1).
À droite (b), cette droite prend appui sur le point frontière sM . Celui-ci est décrit par une
« température interne » plus élevée (mM < 1), déduite de la transformation de Legendre
en sM : mM =−∂sΣ(sM ).

(a) mM > 1. Le maximum de Σ(s ) + s est atteint à l’intérieur de l’intervalle de défi-
nition. La température inverse effective vaut alors m = 1, car l’entropie totale est
donnée par stot = ψ(m)/m|m=1 = Σ[s

∗(1)]+ s ∗(1). Bien que l’espace des solution
soit fragmenté, la mesure peut être décrite alternativement soit par un « état » ther-
modyanique unique, soit par une superposition d’un nombre exponentiel d’états
distincts, identifiables aux amas4. Nous parlerons de phase liquide fragmentée ou
encore, pour des raisons historiques, de brisure dynamique de la symétrie des ré-
pliques. s ∗(1) s’interprète comme l’entropie typique de l’amas contenant une solu-
tion prise au hasard avec la mesure uniforme (2.9), et Σ[s ∗(1)] comme le nombre
d’amas concentrant cette mesure.

(b) mM < 1. Le maximum de Σ(s ) + s est atteint au bord de l’intervalle de définition,
en s = sM , où la complexité s’annule, et où sont vérifiées les relations :

sM = ∂mψ(mM ), (2.22)

Σ(sM ) = ψ(mM )−mM sM =−m2
M∂m

!

ψ(m)
m

"
#

#

#

#

#

mM

= 0. (2.23)

La température inverse effective vaut mM < 1, car l’entropie totale est donnée par
stot = ψ(mM )/mM = sM . Ce comportement est en tout point similaire au phéno-
mène de condensation décrit dans le contexte des codes aléatoires au paragraphe

4Nous reviendrons plus tard (§4.1.3) sur la définition de la notion d’état, et sur sa relation aux
techniques de passage de messages.

slopeslope

slope
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Fully connected factor graph

Learning as a CSP problem

Constraints: one for each pattern

f(W;�µ, ⇠µ) = � (�µ;�(W, ⇠µ))

f(W;�µ, ⇠µ)

f(W;�1, ⇠1)

f(W;�↵N , ⇠↵N )

Wi,k



Monasson, O’Kane 94, Monasson, Zecchina, 95

194 11 A Bird’s Eye View: Multifractals

Fig. 11.1. Random partition of the coupling space of a spherical perceptron with N = 3
inputs by a set of p = 4 examples. Note that only 14 < 24 cells were generated. Shaded
is a pair of mirror cells which correspond to the transformation (J,σσσ ) !→ (−J, −σσσ ).

Due to the random orientations of the hyperplanes the size and shape of the cells
vary greatly. In particular, many classifications may turn out to be impossible so
that their corresponding cell has in fact zero size. On the other hand it is clear that to
every cell associated with an output sequence σσσ there is a “mirror cell” with outputs
−σσσ of exactly the same shape and size which may be generated by inversion of all
coupling vectors forming the original cell at the centre of the N -sphere.

The volume of the cell corresponding to the output sequence σσσ is given by

"(σσσ ) =
∫

dµ(J)

p∏

µ=1

θ

(
Jξξξµσµ

√
N

)
. (11.2)

The integration measure ensures the normalization

Tr
σσσ

"(σσσ ) = 1, (11.3)

implying that "(σσσ ) may be interpreted as the probability that the output sequence
σσσ is realized by a coupling vector J drawn at random from the uniform distribution
on the N -sphere.

In order to characterize the sizes of the cells in the thermodynamic limit, we
recall that non-trivial perceptron learning requires the number of examples to
scale as p = αN , for N → ∞. We thus anticipate that the typical cell size
is exponentially small in N . Therefore the cell size is best characterized by the

Geometry of space of solution and internal representations in MLP learning random patterns 
with continuous weights (zero errors landscape)

“Old” (90s) statistical physics results:  a relatively similar scenario

Fractional volume of weights storing the patterns

V =

R
dw �(w2 � 1)

Q
µ � (�

µ;�(w, ⇠µ))
R
dw �(w2 � 1)

dominant volumes

non-empty volumes

one hidden layer committee NN

S



How does learning take place in large scale DNNs?

However, successful algorithms never “simply” minimize the loss.

Learning algorithms: Variants of gradient back-propagation

Why?



The simplest non-convex neural device: 
perceptron with discrete weights

Analytical results generalise to arbitrary 
number of levels and multiple layers

...~⇠µ � = sign(
NX

i=1

Wi⇠
µ
i )

Wi 2 {±1} , i = 1, ..., N
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Find W such that 8µ

constraints on ↵N {Wi}

Non-convex  minimum “energy” problem

�µ = �(W, ⇠µ)

Given a set of i.i.d. random examples (p=1/2):

Cost-energy function

x � 0

x < 0
⇥(x) = { 0

1

H(W) =
X

µ

⇥ (��µsgn(W · ⇠µ)) = # number of errorsE

i = 1, . . . , N µ = 1, . . . ,↵N{(⇠µi = ±1,�µ = ±1)}



Phase diagram (~1990)

- At E=0, minima are very narrow and isolated

For decades, heuristic local search algorithms were believed to fail  in 
finding solutions for any extensive number of patterns.

Statistical physics of binary neural networks (~1990)

- 1-rsb freezing at finite T (REM like)

- Correlations are present (non REM like)

- Critical capacity given by the RS zero entropy condition

- Local search algorithm fail to find solutions for any extensive number of patterns. 
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FIG. 3: Learning of αn pseudo-random patterns curves for
the binary perceptron for different values of γ0 (n = 104 + 1,
20 samples). The running time scales with γ0 roughly as
1/(1−γ0). Inset: evolution of Qtand Et vs. time t for various
kinds of two-layer network topologies, i.e. n = 37, α = 0.5 and
K ∈

˘

30, 31, . . . , 36
¯

. Note that the number of errors E goes
to 0 in all cases.

giving a simple closed expression in the quantities {mt
i}.

The resulting equation is not asymptotically equivalent
to BP anymore (although the approximation itself has an
error of O

(

n−1/2
)

it participates in a sum of n terms),
but nonetheless gives comparable (just slightly worse) al-
gorithmic performances. Of particular interest are the
corresponding equations for γ0 = 0 (full reinforcement)
which take a simple additive form if written in terms of
the local fields ht

i:

ht+1
i =

∑

t′≤t

∑

b

ξb
i√
n

ut
b ∼ hτ+1

i = hτ
i +

ξb
i√
n

uτ
bτ

(6)

where us
b = f

(

∑

k ̸=i
ξb

k√
n

tanhhs
k, 1

n

∑

k ̸=i tanh2 hs
k

)

and

t scales as αnτ . By choosing at time τ one pattern ξbτ

from the set Ξ, Eq. 6 implements a sequential learning
protocol, still leading to an extensive memory capacity
(around αmax ≃ .5 for the binary perceptron).

The simplicity of Eq. 6 represents a proof-of-concept
of how highly non-trivial learning can take place by
message-passing between simple devices disposed over
the network itself. This fact could shed some light on
the biological treatment of information in neural systems.
Work is in progress along this line [23].
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FIG. 2: BP entropy vs. α for single problem instances of size
n = 3465 for K = 1, 3, 5, 7. The analytic result for K = 1
and K ≫ 1 for n → ∞ are also plotted for comparison. The
upper inset shows Qt vs. t of the analytical DE prediction
(dashed line) vs. simulations over a system of size 105 + 1 at
α = 0.6 without reinforcement (data in perfect agreement to
the prediction) and with reinforcement (γ0 = 0). The bottom
inset shows the fraction of errors E/n vs t for both cases.
In the latter case we can see that Qt

→ 0 as the solution is
reached.

of pattern a. The fixed point of these equations provide
the information we are seeking for. Solving the equa-
tions by iteration proved itself to be an efficient tech-
nique, fully distributed, which is known as a message-
passing method (the components of the vectors u and h
can be thought as messages running along edges of the
factor graph, see Fig. 1). From the fixed point we may
compute the list of all probability marginals P (wi = ±1)
together with global quantities of interest such as the en-
tropy (normalized logarithm of the size of the set W ). As
expected from the statistical mechanics results [11], the
entropy is monotonically decreasing with α and vanishes
at αc ∼ 0.833 for n large enough. Similar results can be
derived for multilayer networks as shown in Fig. 2. The
BP equations can be adapted in a straightforward way
to networks of arbitrary topology, even if the notation is
slightly more encumbered. In general this network will be
formed by connecting several perceptron sub-units. The
corresponding factor graph can be recovered trivially as
in Fig. 1, by just replicating every perceptron for each
pattern, and adding a set of auxiliary units to represent
the output of every perceptron sub-unit of the network.
It will suffice then to derive a set of slightly more general
BP equations for the perceptron which we omit for the
sake of brevity. We have studied analytically the dynam-
ical behaviour of the BP algorithm in the large n limit by
the so called density evolution (DE) technique (see e.g.
[20] for details on DE). In the upper inset of Figure 2
we can see the comparison of numerical simulations of
large single instances with the analytical prediction of
the quantity Q = 1− 1

αn2

∑

i

∑

a m2
i→a at every iteration

step. In the spirit of [16], a way of using the informa-

tion provided by BP is to “decimate” the problem. This
approach is indeed feasible and leads to optimal assign-
ments. However here we focus on a much more efficient
and fully distributed version [21] of the algorithm. The
idea is to introduce an extra term into Eqs. 1-3 enforc-
ing hi = ±∞ at a fixed point, and use wi = sign (hi) as
a solution. This term is introduced stochastically (with
probability 0 at the first iteration and probability 1 at
t = ∞) to improve convergence. We will replace Eq. 3
with Eqs. 4,5:

ht+1
i =

1√
n

∑

b

ξb
i u

t
b→i +

{

0 w.p. γt

ht
i w.p. 1 − γt

(4)

ht+1
i→a = ht+1

i −
1√
n

ξa
i ut

a→i (5)

We will use γt = γt
0 for 0 ≤ γ0 ≤ 1 (though other choices

are also possible). Choosing γ0 = 1 clearly gives back
the original BP set of equations, Eqs. 1-3. We note that
a similar inertia term γht

i (constant γ) was introduced
in [22], which would correspond to average the one in
Eq. 4. Note also that the extra term for γt = 0 corre-
sponds to adding an external field equal to the local field
computed in the last step. Remembering that “fixing” a
variable as in the standard decimation procedure is equiv-
alent to adding an external field of infinite intensity, one
can think of this procedure as a sort of smooth decimation
in which all variables (not only the most polarized ones)
get an external field, but the intensity is proportional
to their polarization. Numerical experiments of learning
randomly generated patterns have been carried out on
systems of various sizes (up to n = 106), with different
choices of K and with different topologies (overlapping
and tree–like). Some are reported in Fig. 3. An easy
to use version of the code is made available at [23]. It is
not hard to think how the same algorithm could be made
effective also in presence of faulty contacts and hetero-
geneous discrete synaptic values. (which need not to be
identified a priori as the message-passing procedure, dis-
tributed over the same graph, could incorporate defects
by modifying accordingly the messages). Even for the
limit case of continuous synapses the process converge to
optimal solutions in a wide range of α.

Experiments have been performed using an improved
version of Eqs. 1-3: Using further linearizations like
in [20] one can obtain a new set of equations that are
equivalent to Eqs. 1-3 up to an error of O

(

n−1/2
)

, hav-
ing two main implementation advantages: memory re-
quirements of just O (n) (in addition to the set of pat-
terns which amounts to αn2 bits), and needing just O (n)
(slow) hyperbolic function computations in addition to
O

(

n2
)

elementary (fast) floating point operations. BP
equations can also be simplified by approximating mk→b

by mk in Eqs. 1-3 (without correction terms), giving a
simple closed expression in the quantities {mt

i}. The re-
sulting equation is not asymptotically equivalent to BP

s/N

𝛼 = P/N

E

𝛼c=0.83

S= log (# optimal W assignments)



dmin(↵) ⇠ O(N)

5

V. CONCLUSION

We give an analytic expression of the Franz-Parisi potential for the binary perceptron problem. This potential
describes the entropy landscape of solutions in the vicinity of a reference equilibrium solution, and its shape is
independent of the choice of the reference point. Solving the saddle-point equations, we find that the concavity of the
curve changes at some distance, leading to a minimal distance below which there doesnot exist solutions satisfying
the distance constraint. Furthermore, this minimal distance increases with the constraint density, implying that the
problem is extremely hard because the solution space is composed of isolated solutions (point-like clusters) with the
property that to go from one solution to another solution, one should flip an extensive number (proportional to N)
of synaptic weights.
Our analysis establishes a refined picture of the organization structure of the solution space for the binary perceptron

problem, which is helpful for understanding the glassy behavior of local search heuristics [9, 13, 14], which may have
some connections with recent studies of constrained glasses [28], and furthermore, is expected to shed light on design
of efficient algorithms for large-scale neuromorphic devices. The analytic analysis presented in this paper also offers
a basis for possible rigorous mathematical (probabilistic) analysis of the entropy landscape [29], and has potentially
applications for studying the solution space structure of other hard problems in information processing, e.g., spike
time-based neural classifiers [30–32].
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Appendix A: Derivation of constrained free energy

In the current context, for a reference equilibrium configuration J at temperature T ′, one is interested in the free
energy of a perturbed system (with the constraint that the configuration w at temperature T should satisfy a prefixed
overlap with J), leading to the constrained free energy [20]:

F (T, T ′, x) =

〈
1

Z(T ′)

∑

J

e−β′E(J) ln
∑

w

e−βE(w)+xJ·w

〉

ξ

, (A1)

where Z(T ′) =
∑

J
e−β′E(J) and x is the coupling field to control the overlap (or distance) between two configurations,

i.e., p ≡ J ·w/N . We are interested in the ground state, then we set both inverse temperatures equal and make them
tend to infinity. Substituting the definition of energy cost of the problem, and using e−βΘ(−u) = Θ(u) in the zero
temperature limit, we have

F (x) =

〈
1

Z(T ′)

∑

J

Θ

(
1√
N

N∑

i=1

Jiξ
µ
i

)

ln
∑

w

Θ

(
1√
N

N∑

i=1

wiξ
µ
i

)

exJ·w
〉

ξ

. (A2)

To evaluate the typical value of F (x), we resort to the replica method [4], by using two mathematical identi-
ties: lnZ = limm→0

∂Zm

∂m and Z−1 = limn→0 Zn−1. Introducing n unconstrained replicas Ja(a = 1, . . . , n) and m
constrained replicas wγ(γ = 1, . . . ,m), we rewrite F (x) as:

F (x) = lim
n→0
m→0

∂

∂m

〈
∑

{Ja,wγ}

∏

µ

[
∏

a,γ

Θ(uµ
a)Θ(vµγ )

]

ex
∑

γ,i J
1

i w
γ
i

〉

ξ

, (A3)

where uµ
a ≡

∑
i J

a
i ξ

µ
i /

√
N and vµγ ≡

∑
iw

γ
i ξ

µ
i /

√
N . To proceed, we define the following overlap matrixes: Qab ≡

Ja · Jb/N , Paγ ≡ Ja · wγ/N and Rγη ≡ wγ · wη/N , which characterize the following disorder averages ⟨uµ
au

µ
b ⟩ =

Qab,
〈
uµ
av

µ
γ

〉
= Paγ and

〈
vµγ v

µ
η

〉
= Rγη. By inserting delta functions for these definitions and using their integral

Geometry of the space of solutions in the binary perceptron:

H. Huang, Y. Kabashima (2014) (q1=1 known since the 80’s)

Franz-Parisi potential: entropy at distance d,  sampling from  typical solution J

dmin(↵) ⇠ O(N)4
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FIG. 1: (Color online) Entropy landscape of solutions in the binary perceptron problem. Iterations of the saddle-point equations
are always converged to produce the data points. The error bars give statistical errors and are smaller than or equal to the
symbol size. (a) Franz-Parisi potential as a function of the normalized Hamming distance. The behavior of the coupling field
with the distance is shown in the inset for α = 0.7, for which an observed maximum implies the change of the concavity of
the entropy curve (this also holds for other finite values of α). (b) Minimal distance versus the constraint density. Within
the minimal distance, there are no solutions satisfying the distance constraint from the reference equilibrium solution. (c)
Schematic illustration of the weight space based on results of (a) and (b). The points indicate the equilibrium solutions of
weights. αs ≃ 0.833 is the storage capacity after which the solution space is typically empty. dmin is the actual Hamming
distance without normalization.

becomes very small for the less constrained case (small constraint density). This explains why a simple local search
algorithm can find a solution when either N or α is small [8–10, 13–15]. As α increases, the minimal distance grows
rapidly, as a consequence, any algorithms working by local move (each time a few weights are flipped) should find
increasing difficulty to identify a solution (especially at a very large N), which holds even for reinforced message
passing algorithms [11]. In other words, an extensive energy or entropic barrier should be overcome. The energy
landscape is always valleys dominated (valleys are metastable states with positive energy cost). These metastable
states are much more numerous than the frozen ground states [26]. Local algorithms will get trapped by these
metastable states with high probability.
We thus conclude that, at variance with random K-SAT or Q-coloring problems [2], the solution space of the

binary perceptron problem is simple in the sense that it is made of isolated solutions instead of well separated
clusters of exponentially many close-by solutions. This picture is consistent with evidences reported in previous
studies [17, 18, 27]. Moreover, non-convergence of the iteration of the saddle-point equations was not observed, which
may be related to the simple structure of the solution space. In fact, below the storage capacity, the replica symmetric
solution is stable without any need to introduce replica symmetry breaking scenario for this problem [3, 19]. Our
quenched computation of the Franz-Parisi potential reveals that, synaptic weights to realize the random classification
task are organized into point-like clusters (zero internal entropy) far apart from each other (see Fig. 1 (c)), with the
result that in the thermodynamic limit, an exponential computation time is required to reach a finite fixed α [9, 16].

dmin(↵) ⇠ O(N)

W Krauth, M. Mezard, (1989)↵
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=
P
max
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Carlo(red curve) and Entropy-drive Monte Carlo(black curve). EdMC is run at 0 temperature

with � = 0.6, MC is started at y0 = 1 and run with a cooling rate of f
y

= 1.001, to ensure

convergence to a solution.

We performed extensive simulations and studied the scaling properties of EdMC in con-

trast to simulated annealing. Figure 2 is a log-log plot of the number of iterations n
E=0 to

reach a solution obtained for increasing N at ↵ = 0.3. A least squares fit(n
E=0 / N2.84) con-

firms the evident power law behaviour. Note that even with an extremely low cooling rate f
y

convergence to a zero energy vector w̃ is not guaranteed: simulated annealing often gets stuck

in local minima, even at low loading(↵ ⇠ 0.3), especially in high dimensionality(N ? 10

3).

The power scaling of simulated annealing has to be confronted with the almost linear be-

haviour of zero temperature EdMC, which is reported in Figure 3. The situation is similar

at ↵ = 0.6: here standard Monte Carlo is uncapable of reaching a zero energy configu-

ration, and gets sistematically trapped in low energy states(our MC is terminated after

n
trap

= 100.000⇥N rejected spin flips). In Figure 4 we show the scaling of MC and EdMC

iterations at ↵ = 0.6, also comparing the number of EdMC necessary to reach the aver-

age minimal energy of standard Monte Carlo. Note the clear sub-linear behaviour of the

latter(light blue curve) and the striking difference in orders of magnitudes.
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Learning in rare regions ? Large deviations analysis

2

same picture also holds for complex architectures trained
on real-world benchmarks.

In a more general sense, these findings highlight the in-

adequacy of a standard equilibrium analysis when used to

describe the practically relevant properties of a prototypi-

cal complex system. There’s no reason to believe that this

scenario is specific to this particular family of problems;

our work could provide a general methodology to detect,

analyze and exploit this kind of occurrences. [Also, to

bring world peace.]

The model.—The single layer binary neural network
(perceptron) maps vectors of N inputs ⇠ 2 {�1, 1}N to
binary outputs as ⌧ (W, ⇠) = sign (W · ⇠), where W 2
{�1, 1}N is the vector of synaptic weights. Given ↵N
input patterns ⇠µ with µ 2 {1, . . . ,↵N} and their cor-
responding desired outputs �µ 2 {�1, 1}↵N , and defin-
ing X

⇠

(W ) =

Q
↵N

µ=1 ⇥ (�µ⌧ (W, ⇠µ)), where ⇥ (x) is the
Heaviside step function, the learning problem is that of
finding W such that ⌧ (W, ⇠µ) = �µ for all µ, i.e. such
that X

⇠

(W ) = 1. The entries ⇠µ
i

are random unbiased
i.i.d. variables. There are two main scenarios of inter-
est for the distribution of the desired outputs �µ: 1)
the classification (or storage) case, in which they are
i.i.d. random variables, and 2) the generalization (or
teacher-student) scenario, in which they are provided by
a “teacher” device, i.e. another perceptron with synap-
tic weights WT . In the classification scenario, the typi-
cal problem is solvable with probability 1 in the limit of
large N up to ↵

c

= 0.833 [5], after which the probability
of finding a solution drops to zero. ↵

c

is called the ca-

pacity ; we also use this term for the maximum value of
↵ for which a solution can be found by a specific algo-
rithm. In the teacher-student scenario, the problem has
multiple solutions up to ↵

TS

= 1.245, after which there
is a first-order transition and only one solution is possi-
ble: the teacher itself [2, 6]. One additional quantity of
interest in this scenario is the generalization error rate
p
e

=

1
⇡

arccos

�
1
N

W ·WT
�
, which is the probability that

⌧ (W, ⇠?) = ⌧
�
WT , ⇠?

�
when ⇠? is a previously unseen

input.
Simplified algorithms.—Only a handful of algorithms

are currently believed to be able to solve the classification
problem and achieve a non-zero capacity in the limit of
large N in a sub-exponential running time; they are all,
to some extent, heuristic, and only numerical evidence
(although with N as large as 106) is available to support
the claims. The first such algorithm is a modified version
of Belief Propagation (BP), a message passing algorithm
which differs from standard BP by an additional “rein-
forcement” term, which can reach a capacity of at least
↵ ' 0.74 [11]. Two more algorithms, called SBPI [12]
and CP+R [13], were derived as crude simplifications of
the reinforced BP scheme: compared to the latter, they
have drastically reduced requirements (only employing
finite discrete quantities and simple, local and on-line
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Figure 1. (Color online) Numerical evidence of the ex-

istence of clusters of solutions. Entropy at a given dis-
tance from a reference solution W̃ , in the classification case
at ↵ = 0.4. From bottom to top: (magenta) theoretical pre-
diction for a typical W̃ ; (blue) numerical estimate based on a
random walks on connected solutions starting from one pro-
vided by SBPI, with N = 1001; (red) estimate from Belief
Propagation using a solution from SBPI, with N = 10001;
(green) theoretical curve for the optimal W̃ ? as computed
from eq. (3); (dotted black) upper bound (↵ = 0 case, all
configurations are solutions). The random-walk points un-
derestimate the number of solutions since they only consider
connected clusters; the BP curve is lower than the optimal
because in the latter W̃ is optimized as a function of the
distance, while in the former it is fixed. Inset : comparison
between a typical solution and one found with SBPI, in the
teacher-student case at ↵ = 0.5 with N = 1001. Larger po-
tentials correspond to smaller distances. Top points (red):
SBPI reference solution, entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as ref-
erence.

update schemes), making them appealing for practical
implementations, at the cost of achieving a slightly lower
capacity (↵ ' 0.69). Yet another algorithm, based on a
Max-Sum scheme, can be shown to have similar charac-
teristics [14]. All these algorithms have typical solving
times which scale almost linearly with the size of the
input. A qualitatively similar scenario holds in the gen-
eralization case, where all these algorithms fail to find
any solution in a finite window starting at a value of ↵
between 1 and 1.1, and ending at ↵

TS

or beyond.
Two issues arise from these results: 1) the failure of

the reinforced BP algorithm to reach the maximal ca-
pacity of ↵

c

' 0.833 patterns, and 2) the effectiveness of
the utterly-simplified algorithms SBPI and CP+R, which
strikingly contrasts the picture provided by standard sta-
tistical analyses.

We investigated these issues through numerical exper-
iments, and found evidence that, in fact, the solutions

 = 1 iff all patterns are  correctly classified

...~⇠µ
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are currently believed to be able to solve the classification
problem and achieve a non-zero capacity in the limit of
large N in a sub-exponential running time; they are all,
to some extent, heuristic, and only numerical evidence
(although with N as large as 106) is available to support
the claims. The first such algorithm is a modified version
of Belief Propagation (BP), a message passing algorithm
which differs from standard BP by an additional “rein-
forcement” term, which can reach a capacity of at least
↵ ' 0.74 [11]. Two more algorithms, called SBPI [12]
and CP+R [13], were derived as crude simplifications of
the reinforced BP scheme: compared to the latter, they
have drastically reduced requirements (only employing
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Figure 1. (Color online) Numerical evidence of the ex-

istence of clusters of solutions. Entropy at a given dis-
tance from a reference solution W̃ , in the classification case
at ↵ = 0.4. From bottom to top: (magenta) theoretical pre-
diction for a typical W̃ ; (blue) numerical estimate based on a
random walks on connected solutions starting from one pro-
vided by SBPI, with N = 1001; (red) estimate from Belief
Propagation using a solution from SBPI, with N = 10001;
(green) theoretical curve for the optimal W̃ ? as computed
from eq. (3); (dotted black) upper bound (↵ = 0 case, all
configurations are solutions). The random-walk points un-
derestimate the number of solutions since they only consider
connected clusters; the BP curve is lower than the optimal
because in the latter W̃ is optimized as a function of the
distance, while in the former it is fixed. Inset : comparison
between a typical solution and one found with SBPI, in the
teacher-student case at ↵ = 0.5 with N = 1001. Larger po-
tentials correspond to smaller distances. Top points (red):
SBPI reference solution, entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as ref-
erence.

update schemes), making them appealing for practical
implementations, at the cost of achieving a slightly lower
capacity (↵ ' 0.69). Yet another algorithm, based on a
Max-Sum scheme, can be shown to have similar charac-
teristics [14]. All these algorithms have typical solving
times which scale almost linearly with the size of the
input. A qualitatively similar scenario holds in the gen-
eralization case, where all these algorithms fail to find
any solution in a finite window starting at a value of ↵
between 1 and 1.1, and ending at ↵

TS

or beyond.
Two issues arise from these results: 1) the failure of

the reinforced BP algorithm to reach the maximal ca-
pacity of ↵
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' 0.833 patterns, and 2) the effectiveness of
the utterly-simplified algorithms SBPI and CP+R, which
strikingly contrasts the picture provided by standard sta-
tistical analyses.

We investigated these issues through numerical exper-
iments, and found evidence that, in fact, the solutions
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istence of clusters of solutions. Entropy at a given dis-
tance from a reference solution W̃ , in the classification case
at ↵ = 0.4. From bottom to top: (magenta) theoretical pre-
diction for a typical W̃ ; (blue) numerical estimate based on a
random walks on connected solutions starting from one pro-
vided by SBPI, with N = 1001; (red) estimate from Belief
Propagation using a solution from SBPI, with N = 10001;
(green) theoretical curve for the optimal W̃ ? as computed
from eq. (3); (dotted black) upper bound (↵ = 0 case, all
configurations are solutions). The random-walk points un-
derestimate the number of solutions since they only consider
connected clusters; the BP curve is lower than the optimal
because in the latter W̃ is optimized as a function of the
distance, while in the former it is fixed. Inset : comparison
between a typical solution and one found with SBPI, in the
teacher-student case at ↵ = 0.5 with N = 1001. Larger po-
tentials correspond to smaller distances. Top points (red):
SBPI reference solution, entropy computed by BP; bottom
curve (magenta): theoretical prediction for a typical solution;
bottom points (purple): BP results using the teacher as ref-
erence.

update schemes), making them appealing for practical
implementations, at the cost of achieving a slightly lower
capacity (↵ ' 0.69). Yet another algorithm, based on a
Max-Sum scheme, can be shown to have similar charac-
teristics [14]. All these algorithms have typical solving
times which scale almost linearly with the size of the
input. A qualitatively similar scenario holds in the gen-
eralization case, where all these algorithms fail to find
any solution in a finite window starting at a value of ↵
between 1 and 1.1, and ending at ↵

TS

or beyond.
Two issues arise from these results: 1) the failure of

the reinforced BP algorithm to reach the maximal ca-
pacity of ↵

c

' 0.833 patterns, and 2) the effectiveness of
the utterly-simplified algorithms SBPI and CP+R, which
strikingly contrasts the picture provided by standard sta-
tistical analyses.

We investigated these issues through numerical exper-
iments, and found evidence that, in fact, the solutions

Wi 2 {±1} , i = 1, ..., N

3

which are found by the simplified algorithms are typically
not isolated; rather, they belong (with high probability at
large N) to large connected clusters of solutions. More
precisely: 1) from a given solution ˜W , a random walk
process over neighboring configurations in the space of
solutions can reach distances of order N from the start-
ing point; 2) the number of solutions at a distance of
order N from ˜W grows exponentially with N (this can
be estimated from the analysis of the recurrence relations
on the average growth factor of the number of solutions
at varying distances, and using the random walk pro-
cesses for sampling the local properties relevant to those
relations) .

Furthermore, we used BP (without reinforcement)
with an additional Franz-Parisi potential [15] to estimate
the entropy of the solutions at varying distance from a
reference solution ˜W obtained from a heuristic solver,
and found that the results do not match the predictions
of the equilibrium analysis [10], see Fig. 1.

We also extended the equilibrium analysis [10] to the
teacher-student scenario, and found that: 1) the qual-
itative picture is the same as for the classification sce-
nario, i.e. typical solutions are isolated for all values of
↵ - even when adding a non-zero stability constraint; 2)
the teacher device is also isolated, and it is in fact indis-
tinguishable from all other typical solutions except for
the generalization error; 3) the results of estimates ob-
tained from BP are consistent with the analytical calcu-
lation when using the teacher as a reference point, but
not when using a solution provided by a heuristic solver
(see inset in Fig. 1). Finally, the generalization error for
solutions found algorithmically is lower than what would
be expected for a typical solution (see Fig. 3).

Large deviation analysis.—These empirical results sug-
gest that the heuristic algorithms do not operate in the
regime described by calculations performed at thermody-
namic equilibrium, but rather in a large-deviation regime,
to which the usual statistical tools are effectively blind
[16].

We found theoretical evidence that this is indeed the
case by studying the following free energy function:

F (d, y) = � 1

Ny
log

0

B@
X

{W̃}
X

⇠

⇣
˜W
⌘
N
⇣
˜W,d

⌘
y

1

CA (1)

where N
⇣
˜W,d

⌘
=

P
{W} X⇠

(W ) �
⇣
W · ˜W,N (1� 2d)

⌘

counts the number of solutions W at normalized Ham-
ming distance d from a reference solution ˜W (� is the
Kronecker delta symbol), and y has the role of an in-
verse temperature. This free energy describes a system
in which each configuration ˜W is constrained to be a solu-
tion, and has an energy E

⇣
˜W
⌘
= � logN

⇣
˜W,d

⌘
which

favors configurations surrounded by an exponential num-
ber of other solutions.

In the limit y ! 1, provided the ground state is
unique, we obtain the entropy of the surrounding solu-
tions:

S (d) = �F (d,1) =

1

N
logN

⇣
˜W ?, d

⌘
(2)

where ˜W ? is the optimal reference solution, i.e. the one
which is surrounded by most other solutions at the given
distance d. Therefore, if an exponentially large cluster of
solutions exists, we expect that S (d) > 0 in a neighbor-
hood of d = 0 (as opposed to the case of typical ˜W ).

We computed eq. (1) by the replica method in the so
called replica-symmetric (RS) Ansatz, and derived an ex-
pression for the y ! 1 case. The analysis of the scaling
of the order parameters with y confirms that the ground
state is indeed unique. We also found that in this limit
the constraint that ˜W is a solution becomes irrelevant.

The resulting expression for the entropy S (d) in the
generalization scenario is:

S (d) = � (1� q) q̂

2

� �q q̂
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⌘⌘
. We used the

standard notation Dz =

e

� x

2
2p

2⇡
dz to indicate a Gaussian

measure, and H (x) =
´1
x

Dz. The quantities q, �q, R,
q̂, �q̂, ˆR and ˆS are order parameters to be determined
by saddle-point equations, thus yielding a system of 7
coupled equations. q and R have a simple interpretation
in terms of the typical overlap between two solutions and
between a solution and the teacher, respectively. R can
thus be used to predict the generalization error p

e

.
The classification scenario can be obtained by setting

R =

ˆR = 0 in expression (3), and solving for the remain-
ing system of 5 equations.

The solution to these systems of equations displays a
number of noteworthy properties (Fig. 2):

1. The classification (with ↵ < ↵
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) and generalization
(with ↵ < ↵
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) cases are qualitatively very similar.

2. The system has a solution yielding S (d) > 0 for
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], where ↵
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' 1.085 in the
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, there exists a
critical value dmin such that the system has no so-
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strictly positive right after ↵
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. This suggests that
a large cluster of solutions exists up to at least
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which are found by the simplified algorithms are typically
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large N) to large connected clusters of solutions. More
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rium analysis [13] to the teacher-student scenario, and
found that: 1) typical solutions are isolated for all values
of ↵ even when adding a non-zero stability constraint,
as in the classification case; 2) the teacher device is iso-
lated and indistinguishable from all other typical solu-
tions except for the generalization error; 3) the results
of estimates obtained from BP are consistent with the
analytical calculation when using the teacher as a refer-
ence point, but not when using a solution provided by a
heuristic solver (see inset in Fig. 1). Finally, the general-
ization error for solutions found algorithmically is lower
than what would be expected for a typical solution (see
Fig. 3).

Large deviation analysis.—These results indicate that
calculations performed at thermodynamic equilibrium
are effectively blind to the solutions found by the heuris-
tic algorithms. Traditionally, in the context of replica
theory, similar situations have been addressed by looking
for sub-dominant states [19]. However, this is insufficient
in the present case.

A different analytical tool is thus needed for obtaining
a description of this regime, which — according to the
numerical evidence — is characterized by regions with a
high density of solutions. Clearly, the statistical weight
of the individual solutions must be modified, by favor-
ing the ones which are surrounded by a large number
of other solutions. Therefore, we studied the following
large-deviation free energy density function:
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ming distance d from a reference solution ˜

W (� is the Kro-
necker delta symbol), and y has the role of an inverse tem-
perature. This free energy describes a system in which
each configuration ˜

W is constrained to be a solution, and
has a formal energy density E
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which favors configurations surrounded by an exponential
number of other solutions, with y controlling the amount
of reweighting. The regions of highest local density are
then described in the regime of large y and small d.

The relevant quantities are computed through the
usual statistical physics tools; of particular importance
is the entropy density of the surrounding solutions, the
local entropy :
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which is simply given by SI (d, y) = @y (yF (d, y)). The
signature for the existence of a dense and exponentially
large cluster of solutions is that SI (d, y) > 0 in a neigh-
borhood of d = 0. Another important quantity is the
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Figure 2. (Color online) Large deviation analysis. Local
entropy curves at varying distance d from the reference solu-
tion W̃ for various ↵ (classification case). Black dotted curve:
↵ = 0 case (upper bound). Red solid curves: RS results from
eq. (1) (optimal W̃ ). Up to ↵ = 0.77, the curves are mono-
tonic. At ↵ = 0.78, a region incorrectly described within
the RS Ansatz appears (dotted; geometric bounds are vio-
lated at the boundaries of the part of the curve with negative
derivative). At ↵ = 0.79, the solution is discontinuous (a gap
appears in the curve), and parts of the curve have negative
entropy (dotted). Blue dashed curves: equilibrium analysis
(typical W̃ ) [13] (dotted parts are unphysical): the curves are
never positive in a neighborhood of d = 0. Inset : zoom of
the region around d = 0 (notice the solution for ↵ = 0.79,
followed by a gap).

external entropy, i.e. the entropy of the reference solu-
tions SE (d, y) = �y (F (d, y) + SI (d, y)), which must
also be non-negative.

The special case y = 1 is essentially equivalent to the
computation of [10]; SI (d, y) reduces to the computation
à la Franz-Parisi of [13] in the limit y ! 0.

We computed eq. (1) by the replica method in the
replica-symmetric (RS) Ansatz, resulting in an expres-
sion involving 13 order parameters to be determined by
the saddle point method. The analytical expressions and
the details of the computation are reported in the SM
[23]. It turns out that, for all values of ↵ and d, there
is a value of y beyond which SE (d, y) < 0, which is un-
physical and signals a problem with the RS assumption.
Therefore, we sought the value y

?
= y

?
(↵, d) at which

SE (d, y

?
) = 0, i.e. the highest value of y for which the

RS analytical results are consistent. In the following, we
thus drop the y dependency.

The solution to the system of equations stemming from
the RS saddle point produces qualitatively very similar
results for both the classification (with ↵ < ↵c) and the
generalization (with ↵ < ↵TS) case. It displays a number
of noteworthy properties (Fig. 2):

1. For all ↵ < ↵c, there is a neighborhood of d = 0
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rium analysis [13] to the teacher-student scenario, and
found that: 1) typical solutions are isolated for all values
of ↵ even when adding a non-zero stability constraint,
as in the classification case; 2) the teacher device is iso-
lated and indistinguishable from all other typical solu-
tions except for the generalization error; 3) the results
of estimates obtained from BP are consistent with the
analytical calculation when using the teacher as a refer-
ence point, but not when using a solution provided by a
heuristic solver (see inset in Fig. 1). Finally, the general-
ization error for solutions found algorithmically is lower
than what would be expected for a typical solution (see
Fig. 3).

Large deviation analysis.—These results indicate that
calculations performed at thermodynamic equilibrium
are effectively blind to the solutions found by the heuris-
tic algorithms. Traditionally, in the context of replica
theory, similar situations have been addressed by looking
for sub-dominant states [19]. However, this is insufficient
in the present case.

A different analytical tool is thus needed for obtaining
a description of this regime, which — according to the
numerical evidence — is characterized by regions with a
high density of solutions. Clearly, the statistical weight
of the individual solutions must be modified, by favor-
ing the ones which are surrounded by a large number
of other solutions. Therefore, we studied the following
large-deviation free energy density function:
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which favors configurations surrounded by an exponential
number of other solutions, with y controlling the amount
of reweighting. The regions of highest local density are
then described in the regime of large y and small d.

The relevant quantities are computed through the
usual statistical physics tools; of particular importance
is the entropy density of the surrounding solutions, the
local entropy :

SI (d, y) = �
D
E
⇣
˜

W

⌘E

⇠,W̃
=

1

N

D
logN

⇣
˜

W,d

⌘E

⇠,W̃
.

(2)
which is simply given by SI (d, y) = @y (yF (d, y)). The
signature for the existence of a dense and exponentially
large cluster of solutions is that SI (d, y) > 0 in a neigh-
borhood of d = 0. Another important quantity is the
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Figure 2. (Color online) Large deviation analysis. Local
entropy curves at varying distance d from the reference solu-
tion W̃ for various ↵ (classification case). Black dotted curve:
↵ = 0 case (upper bound). Red solid curves: RS results from
eq. (1) (optimal W̃ ). Up to ↵ = 0.77, the curves are mono-
tonic. At ↵ = 0.78, a region incorrectly described within
the RS Ansatz appears (dotted; geometric bounds are vio-
lated at the boundaries of the part of the curve with negative
derivative). At ↵ = 0.79, the solution is discontinuous (a gap
appears in the curve), and parts of the curve have negative
entropy (dotted). Blue dashed curves: equilibrium analysis
(typical W̃ ) [13] (dotted parts are unphysical): the curves are
never positive in a neighborhood of d = 0. Inset : zoom of
the region around d = 0 (notice the solution for ↵ = 0.79,
followed by a gap).

external entropy, i.e. the entropy of the reference solu-
tions SE (d, y) = �y (F (d, y) + SI (d, y)), which must
also be non-negative.

The special case y = 1 is essentially equivalent to the
computation of [10]; SI (d, y) reduces to the computation
à la Franz-Parisi of [13] in the limit y ! 0.

We computed eq. (1) by the replica method in the
replica-symmetric (RS) Ansatz, resulting in an expres-
sion involving 13 order parameters to be determined by
the saddle point method. The analytical expressions and
the details of the computation are reported in the SM
[23]. It turns out that, for all values of ↵ and d, there
is a value of y beyond which SE (d, y) < 0, which is un-
physical and signals a problem with the RS assumption.
Therefore, we sought the value y
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= y
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(↵, d) at which

SE (d, y
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) = 0, i.e. the highest value of y for which the

RS analytical results are consistent. In the following, we
thus drop the y dependency.

The solution to the system of equations stemming from
the RS saddle point produces qualitatively very similar
results for both the classification (with ↵ < ↵c) and the
generalization (with ↵ < ↵TS) case. It displays a number
of noteworthy properties (Fig. 2):

1. For all ↵ < ↵c, there is a neighborhood of d = 0
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rium analysis [13] to the teacher-student scenario, and
found that: 1) typical solutions are isolated for all values
of ↵ even when adding a non-zero stability constraint,
as in the classification case; 2) the teacher device is iso-
lated and indistinguishable from all other typical solu-
tions except for the generalization error; 3) the results
of estimates obtained from BP are consistent with the
analytical calculation when using the teacher as a refer-
ence point, but not when using a solution provided by a
heuristic solver (see inset in Fig. 1). Finally, the general-
ization error for solutions found algorithmically is lower
than what would be expected for a typical solution (see
Fig. 3).

Large deviation analysis.—These results indicate that
calculations performed at thermodynamic equilibrium
are effectively blind to the solutions found by the heuris-
tic algorithms. Traditionally, in the context of replica
theory, similar situations have been addressed by looking
for sub-dominant states [19]. However, this is insufficient
in the present case.

A different analytical tool is thus needed for obtaining
a description of this regime, which — according to the
numerical evidence — is characterized by regions with a
high density of solutions. Clearly, the statistical weight
of the individual solutions must be modified, by favor-
ing the ones which are surrounded by a large number
of other solutions. Therefore, we studied the following
large-deviation free energy density function:
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which favors configurations surrounded by an exponential
number of other solutions, with y controlling the amount
of reweighting. The regions of highest local density are
then described in the regime of large y and small d.

The relevant quantities are computed through the
usual statistical physics tools; of particular importance
is the entropy density of the surrounding solutions, the
local entropy :
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which is simply given by SI (d, y) = @y (yF (d, y)). The
signature for the existence of a dense and exponentially
large cluster of solutions is that SI (d, y) > 0 in a neigh-
borhood of d = 0. Another important quantity is the
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tonic. At ↵ = 0.78, a region incorrectly described within
the RS Ansatz appears (dotted; geometric bounds are vio-
lated at the boundaries of the part of the curve with negative
derivative). At ↵ = 0.79, the solution is discontinuous (a gap
appears in the curve), and parts of the curve have negative
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(typical W̃ ) [13] (dotted parts are unphysical): the curves are
never positive in a neighborhood of d = 0. Inset : zoom of
the region around d = 0 (notice the solution for ↵ = 0.79,
followed by a gap).

external entropy, i.e. the entropy of the reference solu-
tions SE (d, y) = �y (F (d, y) + SI (d, y)), which must
also be non-negative.

The special case y = 1 is essentially equivalent to the
computation of [10]; SI (d, y) reduces to the computation
à la Franz-Parisi of [13] in the limit y ! 0.

We computed eq. (1) by the replica method in the
replica-symmetric (RS) Ansatz, resulting in an expres-
sion involving 13 order parameters to be determined by
the saddle point method. The analytical expressions and
the details of the computation are reported in the SM
[23]. It turns out that, for all values of ↵ and d, there
is a value of y beyond which SE (d, y) < 0, which is un-
physical and signals a problem with the RS assumption.
Therefore, we sought the value y
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) = 0, i.e. the highest value of y for which the

RS analytical results are consistent. In the following, we
thus drop the y dependency.

The solution to the system of equations stemming from
the RS saddle point produces qualitatively very similar
results for both the classification (with ↵ < ↵c) and the
generalization (with ↵ < ↵TS) case. It displays a number
of noteworthy properties (Fig. 2):

1. For all ↵ < ↵c, there is a neighborhood of d = 0
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Dense states have the  propensity to generalise

clusters of solutions. Furthermore, for all α, the curves for
SIðdÞ are all approximately equal around d ¼ 0; in
particular, they all approximate the case for α ¼ 0 where
all points are solutions. This implies that the clusters of
solutions are extremely dense at their core. This is our chief
result. The size of this dense region shrinks with α and
vanishes at αc.
(2) For large distances, as expected, SIðdÞ collapses with

a second-order transition onto the equilibrium entropy; i.e.,
this regime is dominated by the typical solutions.
(3) Up to a certain αU (where αU ≃ 0.77 in the

classification case and αU ≃ 1.1 in the generalization case),
the SIðdÞ curves are monotonic in d. Beyond αU, there is a
transition in which there appear regions of d (dotted in
Fig. 2) that are not correctly described by the RS ansatz
(since geometric bounds are violated; see the discussion in
the Supplemental Material for details [18]), and must be
described at a higher level of replica symmetry breaking
(RSB). We speculate that this transition signals a change in
the structure of the space of solutions: for α < αU, the
densest cores of solutions are immersed in a huge con-
nected structure; for α > αU, this structure fractures and the
dense cores become isolated and hard to find.
(4) In the teacher-student scenario, the generalization

properties of the optimal reference solutions ~W are gen-
erally much better than those of typical solutions. This is
clearly shown in Fig. 3, where we also show that the curve
for small d is in striking agreement with that produced
using solutions obtained from the SBPI algorithm. The

generalization error decreases monotonically when increas-
ing d, and it saturates to a plateau when SIðdÞ becomes
equal to the entropy of the typical solutions [see point
(2) above].
We expect this qualitative and quantitative picture,

especially for α≲ αU, to be quite robust. First, these results
are convincingly supported by our numerical findings,
where available. Furthermore, a slightly simplified model
analyzed at a higher level of RSB and at y → ∞ [see Eq. (3)
below] yields almost indistinguishable results.
The analytical computations are straightforwardly gen-

eralized to the case of multilevel synapses and sparse
patterns, and the results are qualitatively identical [23].
Multilayer network.—These theoretical results seem to

extend to more complex architectures and nonrandom
learning problems. We observed this by heuristically
extending the CPþ R algorithm to multilayer classifiers
with L possible output labels, and training these networks
on the MNIST database benchmark [24], which consists of
7 × 104 grayscale images of hand-written digits (L ¼ 10).
A description of the architecture and of the learning
algorithm is provided in the Supplemental Material [18].
We observed that it is indeed very easy to achieve perfect

learning on the whole training data set, and that very good
generalization errors can be reached (e.g., 1.25% with order
107 synapses) despite the binary nature of the synapses and
the fact that we did not specialize the architecture for this
particular data set. Moreover, we did not observe any
overfitting: the generalization error does not degrade by
reaching zero training error, or by using larger networks.
As for the perceptron, we performed a random-walk

process in the space of solutions, with similar results: the
simplified algorithm reaches a solution that is part of a
dense, large connected cluster, and the generalization
properties of the starting solution are better than those of
solutions found in later stages of the random walk (see
Fig. 1B in the Supplemental Material [18]).
Optimization.—We also studied a variant of the free

energy (1) without the constraint on ~W:

FUðd; yÞ ¼ −
1

Ny
log

!X

f ~Wg

N ð ~W; dÞy
"
: ð3Þ

The analysis in this case requires at least an additional
step of RSB, and will be presented in detail in a follow-up
work [25]. Still, the results are very close to those reported
for the constrained scenario; furthermore, the probability
that the ~W in this system are a solution tends exponentially
to 1 with d → 0, despite the removal of the explicit
constraint. This suggests that we can algorithmically
exploit FUðd; yÞ to efficiently sample ground states of
the system, and that such a strategy could be applied to
different optimization problems as well.
As the most straightforward proof of concept in this

direction we have developed a Monte Carlo Markov Chain

FIG. 3 (color online). Generalization error (teacher-student
scenario). From top to bottom: (blue) typical solution, (red)
optimal ~W from Eq. (1) at small d (we used d ¼ 0.025 for
numerical reasons and since the curve is not sensitive to the
precise value of d in this regime; this solution disappears after
α≃ 1.2), (black points) solutions from SBPI at N ¼ 10001, 100
samples per point, (magenta) optimal ~W from Eq. (1) at the value
of d for which SI is maximum (i.e., it equals the equilibrium
entropy), and (green) Bayesian case: error from the average over
all solutions. At αTS ¼ 1.245 there is the first-order transition to
perfect learning; between αTS and α ¼ 1.5 there is a metastable
regime; the dashed parts of the curves correspond to unphysical
solutions of the RS equations with negative entropy.
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• contribution to the Bayesian integral from the dense cluster 

• the Teacher is an isolated weight vector

Subdominant Dense Clusters Allow for Simple Learning and High Computational Performance in Neural Networks with Discrete Synapses 
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Figure 2. (Color online) Entropy phase diagram. Entropy
levels (eq. (3), classification case) are indicated by shaded
areas (decreasing from bottom-right to top-left). The white
area marked with an asterisk in the top-left corner denotes
a region where there is no solution to the equations. Red
solid curve: minimum distance, either due to a first-order
transition (in ↵ or d), or to the entropy becoming negative.
White short-dashed curve: second-order transition to the RS
solution (level curves to its right are horizontal). Purple dot-
dashed curve: corresponds to a difference of 10�3 with the
entropy of the ↵ = 0 case, so that the level curves to its left are
quasi-vertical (high density of solutions). Blue long-dashed
curve: minimal distance for typical W̃ (zero-entropy line).
Inset : entropy vs distance, two examples: ↵ = 0.5 (bottom)
and ↵ = 0.7 (top). Dotted gray curve: ↵ = 0 case. Red
continuous curves: optimal W̃ . Blue dashed curves: typical
W̃ . White squares: RS transition points (white line in main
plot). Full dots: the curves tend to the ↵ = 0 case (purple
curve in the main plot).

↵ = ↵
U

, and that after that point it either disap-
pears via a first-order transition or it breaks down
in a replica symmetry breaking (RSB) scenario [17]
(the RSB analysis of this regime will be reported
elsewhere). The critical value ↵

U

is in strikingly
good agreement with the algorithmic threshold of
the reinforced BP algorithm, and with the general
picture provided by the numerical evidence, sug-
gesting that the RS analysis is correct at least up
to ↵ = ↵

U

.

3. The cluster is rather dense at its core, i.e. the en-
tropy for d ! 0 approaches the ↵ = 0 case, where
every configuration is a solution. This means that,
for finite N , there are regions of sufficiently small
d where most configurations around the reference
solution are solutions themselves.

4. For large distances, as expected, the solution col-
lapses with a second-order transition onto the re-
sult for the entropy of a single perceptron, i.e. this
regime is dominated by the typical solutions.
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Figure 3. (Color online) Generalization error (teacher-

student scenario). From top to bottom: (blue) typical so-
lution; (red) optimal W̃ from eq. 2, optimized over distance
d (dashed curve: d = 0, which is optimal only for low ↵);
(black) solutions from SBPI at N = 10001, 100 samples per
point; (green) bayesian case: error from the average over all
solutions.
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Figure 4. (Color online) Multi-layer tests on MNIST.
A. Network scheme. B. results of a random walk over solu-
tions to the training set (with K1 = 11, K2 = 30, r = 0),
starting from a solution found by CP+R. Moving away from
this solution, the generalization error (red, circles) increases,
and the solution density (blue, squares) decreases. The same
qualitative behavior is observed with all network sizes, and
regardless of preprocessing.

5. In the teacher-student scenario, at small ↵ the gen-
eralization error of the optimal reference solution
˜W ? at d ! 0 is smaller than that of typical ˜W ; at
larger ↵, it becomes larger, but a relative minimum
appears at a finite value of d (Fig. 3). This shows
that criteria for finding solutions which generalize
better then typical ones can be devised (in fact,
SBPI finds even better solutions in this respect).

[MENTION MULTIPLE-LEVELS]
Multi-layer network.—Interestingly, these theoretical

results seem to extend to more complex architectures
and non-random learning problems. We observed this by
heuristically extending the CP+R algorithm to multi-
layer classifiers with L possible output labels. The ar-
chitecture we used (Fig. 4A) consists of an array of K2

committee machines, each comprising K1 hidden units,
whose outputs are sent to L summation nodes, and from

Smallest architecture with zero errors on the training set

learning layer

no overfitting with size
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Figure 1: A. Critical capacity αc as a function of of the number of states per synapse L+ 1, for different values of
the coding rate f . B. Same as in panel A, but only for the dense (unbiased) case f = 0.5, with a wider range of L,
and showing a fit of the form α∞ − a

Lb over the last part of the curve (L ≥ 5). The fit parameters are α∞ ≃ 1.0,
a ≃ 0.5, b = 0.85.

such as the optimal value of the neuronal threshold θ and the critical capacity, which in this case is derived as the
value of α for which Φ = 0.

The details of the computation follow standard steps (they can also be obtained from the computation presented
in Appendix B setting y = 0). Fig. 1A shows the resulting value of αc as a function of the number of states L+ 1,
for different values of the coding rate f . As expected, αc increases with the number of values a synaptic variable
can assume and with the sparsity of the coding. Fig. 1B shows the same curve for the dense (unbiased) f = 0.5 case
with a wider range of L: it is expected that in this case αc → 1 as L → ∞, consistently with the case of continuous
positive synapses [17], and therefore we also show the results of a tentative fit of the form αc ∼ α∞ − a

Lb which
estimates the rate of convergence to the continuous case; the fit yields α∞ ≃ 1.0, as expected, and an exponent
b ≃ 0.85. From the results in Fig. 1A, it can be seen that the qualitative behavior is not different for the sparser
cases. Qualitatively similar results were also obtained in a slightly different setting in [19].

One interesting general observation about these results is that the gain in capacity with each additional synaptic
state decreases fairly rapidly after the first few values. This observation by itself is not conclusive, since even when
solutions exist they may be hard to find algorithmically (see the next section). As we shall see in Section IVC,
however, accessible solutions exist for all the cases we tested at least up to 0.9αc. From the point of view of the
implementation cost (whether biological or in silico), it seems therefore that increasing the synaptic precision would
not be a sensible strategy, as it leads to a very small advantage in terms of computational or representational power.
This is consistent with the general idea that biological synapses would only need to implement synapses with a few
bits of precision.

B. Typical solutions are isolated

To explore the solution space structure of a perceptron learning problem the general idea is to select a reference
solution sampled from the flat measure of eq. (6), and count how many other solutions can be found at a given
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Figure 2: Local entropy density as a function of the distance D from the reference configuration W̃ , comparing
the typical case from the Franz-Parisi analysis (blue lines) with the optimal case from the large deviations analysis

(red lines), at various values of the number of patterns per variable α. The upper bound (gray dashed curve)
corresponds to the α = 0 case where every configuration is a solution. The unphysical portions of the curves

where the local entropy becomes negative is dotted. For the typical case, all curves eventually go below zero at
some Dmin > 0, for all values of α, i.e. typical solutions are isolated. For the optimal case, the curves for the

ΦRC (D, y⋆ (D)) case (RS analysis) and the ΦRU (D,∞) case (1RSB analysis) yield results which are too close to
be distinguished in the plot at this resolution. The “optimal W̃ ” curve at α = 1.6 is interrupted due to numerical
problems in solving the equations, but it could continue up to D = 0, approaching the upper bound for small α.
Our results indicate that that is the case for α = 1.55, although it’s not shown here since we could not produce a
complete curve, again due to numerical difficulties. The curves for α = 1.62 and α = 1.64 are interrupted because

the equations stop having solutions at some value of D > 0 (αU transition, see text). The optimal curve at
α = 1.3 is also essentially indistinguishable from the RS computation performed at y = ∞.

L+1=5

Generalisation to multiple state variables



Objective Function:  
search for configurations   which maximize the local entropy  
(minimize the “energy”)             

Principled algorithm:  
Local Entropy driven Simulated Annealing

1.  SA moves   

2.  Belief Propagation method to estimate the local entropy
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which are found by the simplified algorithms are typically
not isolated; rather, they belong (with high probability at
large N) to large connected clusters of solutions. More
precisely: 1) from a given solution ˜W , a random walk
process over neighboring configurations in the space of
solutions can reach distances of order N from the start-
ing point; 2) the number of solutions at a distance of
order N from ˜W grows exponentially with N (this can
be estimated from the analysis of the recurrence relations
on the average growth factor of the number of solutions
at varying distances, and using the random walk pro-
cesses for sampling the local properties relevant to those
relations) .

Furthermore, we used BP (without reinforcement)
with an additional Franz-Parisi potential [15] to estimate
the entropy of the solutions at varying distance from a
reference solution ˜W obtained from a heuristic solver,
and found that the results do not match the predictions
of the equilibrium analysis [10], see Fig. 1.

We also extended the equilibrium analysis [10] to the
teacher-student scenario, and found that: 1) the qual-
itative picture is the same as for the classification sce-
nario, i.e. typical solutions are isolated for all values of
↵ - even when adding a non-zero stability constraint; 2)
the teacher device is also isolated, and it is in fact indis-
tinguishable from all other typical solutions except for
the generalization error; 3) the results of estimates ob-
tained from BP are consistent with the analytical calcu-
lation when using the teacher as a reference point, but
not when using a solution provided by a heuristic solver
(see inset in Fig. 1). Finally, the generalization error for
solutions found algorithmically is lower than what would
be expected for a typical solution (see Fig. 3).

Large deviation analysis.—These empirical results sug-
gest that the heuristic algorithms do not operate in the
regime described by calculations performed at thermody-
namic equilibrium, but rather in a large-deviation regime,
to which the usual statistical tools are effectively blind
[16].

We found theoretical evidence that this is indeed the
case by studying the following free energy function:

F (d, y) = � 1

Ny
log

0

B@
X

{W̃}
X

⇠

⇣
˜W
⌘
N
⇣
˜W,d

⌘
y

1

CA (1)

where N
⇣
˜W,d

⌘
=

P
{W} X⇠

(W ) �
⇣
W · ˜W,N (1� 2d)

⌘

counts the number of solutions W at normalized Ham-
ming distance d from a reference solution ˜W (� is the
Kronecker delta symbol), and y has the role of an in-
verse temperature. This free energy describes a system
in which each configuration ˜W is constrained to be a solu-
tion, and has an energy E

⇣
˜W
⌘
= � logN

⇣
˜W,d

⌘
which

favors configurations surrounded by an exponential num-
ber of other solutions.

In the limit y ! 1, provided the ground state is
unique, we obtain the entropy of the surrounding solu-
tions:

S (d) = �F (d,1) =

1

N
logN

⇣
˜W ?, d

⌘
(2)

where ˜W ? is the optimal reference solution, i.e. the one
which is surrounded by most other solutions at the given
distance d. Therefore, if an exponentially large cluster of
solutions exists, we expect that S (d) > 0 in a neighbor-
hood of d = 0 (as opposed to the case of typical ˜W ).

We computed eq. (1) by the replica method in the so
called replica-symmetric (RS) Ansatz, and derived an ex-
pression for the y ! 1 case. The analysis of the scaling
of the order parameters with y confirms that the ground
state is indeed unique. We also found that in this limit
the constraint that ˜W is a solution becomes irrelevant.

The resulting expression for the entropy S (d) in the
generalization scenario is:

S (d) = � (1� q) q̂

2

� �q q̂

2

� q �q̂

2

� (1� 2d) ˆS �R ˆR+
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ˆ 1

�1
Dz0 max
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where A± = � z

2
1
2 +log

⇣
2 cosh

⇣
z1
p
�q̂ + z0

p
q̂ ± ˆS +
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and B = � z

2
1
2 + log

⇣
H
⇣

z1
p
�q+z0

p
qp

1�q

⌘⌘
. We used the

standard notation Dz =

e

� x

2
2p

2⇡
dz to indicate a Gaussian

measure, and H (x) =
´1
x

Dz. The quantities q, �q, R,
q̂, �q̂, ˆR and ˆS are order parameters to be determined
by saddle-point equations, thus yielding a system of 7
coupled equations. q and R have a simple interpretation
in terms of the typical overlap between two solutions and
between a solution and the teacher, respectively. R can
thus be used to predict the generalization error p

e

.
The classification scenario can be obtained by setting

R =

ˆR = 0 in expression (3), and solving for the remain-
ing system of 5 equations.

The solution to these systems of equations displays a
number of noteworthy properties (Fig. 2):

1. The classification (with ↵ < ↵
c

) and generalization
(with ↵ < ↵

TS

) cases are qualitatively very similar.

2. The system has a solution yielding S (d) > 0 for
all values of d for ↵ 2 [0,↵

U

], where ↵
U

' 0.755
in the classification case and ↵

U

' 1.085 in the
generalization case. For ↵ � ↵

U

, there exists a
critical value dmin such that the system has no so-
lutions for d < dmin. Both d

min

and S (dmin) are
strictly positive right after ↵

U

. This suggests that
a large cluster of solutions exists up to at least
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Perceptron Learning Problem, N = 801, ↵ = 0.3. A typical trajectory of standard Monte

Carlo(red curve) and Entropy-drive Monte Carlo(black curve). EdMC is run at 0 temperature

with � = 0.6, MC is started at y0 = 1 and run with a cooling rate of f
y

= 1.001, to ensure

convergence to a solution.

We performed extensive simulations and studied the scaling properties of EdMC in con-

trast to simulated annealing. Figure 2 is a log-log plot of the number of iterations n
E=0 to

reach a solution obtained for increasing N at ↵ = 0.3. A least squares fit(n
E=0 / N2.84) con-

firms the evident power law behaviour. Note that even with an extremely low cooling rate f
y

convergence to a zero energy vector w̃ is not guaranteed: simulated annealing often gets stuck

in local minima, even at low loading(↵ ⇠ 0.3), especially in high dimensionality(N ? 10

3).

The power scaling of simulated annealing has to be confronted with the almost linear be-

haviour of zero temperature EdMC, which is reported in Figure 3. The situation is similar

at ↵ = 0.6: here standard Monte Carlo is uncapable of reaching a zero energy configu-

ration, and gets sistematically trapped in low energy states(our MC is terminated after

n
trap

= 100.000⇥N rejected spin flips). In Figure 4 we show the scaling of MC and EdMC

iterations at ↵ = 0.6, also comparing the number of EdMC necessary to reach the aver-

age minimal energy of standard Monte Carlo. Note the clear sub-linear behaviour of the

latter(light blue curve) and the striking difference in orders of magnitudes.
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convergence to a zero energy vector w̃ is not guaranteed: simulated annealing often gets stuck

in local minima, even at low loading(↵ ⇠ 0.3), especially in high dimensionality(N ? 10

3).

The power scaling of simulated annealing has to be confronted with the almost linear be-

haviour of zero temperature EdMC, which is reported in Figure 3. The situation is similar

at ↵ = 0.6: here standard Monte Carlo is uncapable of reaching a zero energy configu-

ration, and gets sistematically trapped in low energy states(our MC is terminated after

n
trap

= 100.000⇥N rejected spin flips). In Figure 4 we show the scaling of MC and EdMC

iterations at ↵ = 0.6, also comparing the number of EdMC necessary to reach the aver-

age minimal energy of standard Monte Carlo. Note the clear sub-linear behaviour of the

latter(light blue curve) and the striking difference in orders of magnitudes.
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Local should not be interpreted as infinitesimal: the local entropy is the log of the number of 
optimal configuration within a hyper-sphere of radius O(N) or fractional volume O(1).



What we have learned from non-convex 1-2 layer NN 
learning random patterns?

✓The loss function presents an exponential proliferation of metastable 
states which trap SA or full batch Langevin dynamics

✓HOWEVER, there exist rare dense regions (small but still of  extensive 
size) which are accessible to simple non-detailed-balance stochastic 
algorithms. These regions have good generalisation capabilities.

✓Accessibility and generalization are not in conflict

✓The Local Entropy Measure amplifies the weight of these regions (from 
exponentially small to dominant!)

✓shape of dense regions depends on the data, difficult to study 
analytically even for random patterns



Successful algorithms never “simply” minimize the loss.

Why?

Because the stationary measure of the stochastic learning process 
should not be the equilibrium Gibbs measure of the loss function.
Many (simple!) out-of-equilibrium processes are attracted by the 
rare dense states (wide minima).

back to question:



From Local entropy measure to the Robust Ensemble
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and are independent and identically distributed (i.i.d.), except in the case of the fully-connected committee machine
where ⇠kµi = ⇠k

0µ
i for all k, k0 and therefore we only extract the values for k = 1.

We also actually exploit a symmetry in the problem and set all desired outputs to 1, since for each pattern its
opposite must have an opposite output, i.e. we can always transform an input output pair (⇠µ,�µ

D) into (⇠µ0, 1), where
the new pattern ⇠µ0 = �µ

D⇠µ has the same probability as ⇠µ.

C. Energy definition

The energy, or cost, for each pattern is defined as the minimum number of weights which need to be switched in
order to correctly classify the pattern, i.e. in order to satisfy the relation ⇣
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= 1. The total energy

is the sum of the energies for all patterns, E (W ) =
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µ=1

Eµ
(W ).

If the current configuration of the weights W satisfies the pattern, the corresponding energy is obviously 0. There-
fore, if the training problem is satisfiable, the ground states with this energy definition are the same as for the easier
energy function given in terms of the number of errors.

If the current configuration violates the pattern, the energy can be computed as follows: we need to compute the
minimum number cµ of units of the first level which need to change their outputs, choose the cµ units which are
easiest to fix, and for each of them compute the minimum number of weights which need to be changed. In formulas:
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where the sort (·) function returns its argument sorted in ascending order. The above auxiliary quantities all depend
on W , but we omitted the dependency for clarity of notation.

In the single-layer case K = 1 the expression simplifies considerably, since �
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S2. REPLICATED SIMULATED ANNEALING

We run Simulated Annealing (plus “scoping”) on a system of interacting replicas. For simplicity, we trace away the
reference configuration which mediates the interaction. Thus, at any given step, we want to sample from a probability
distribution

P ({W a}) /
X

W

exp

0

@��

yX

a=1

E (W a
) + �

yX

a=1

NX

j=1

W a
j Wj

1

A

/ exp

0

@��

yX

a=1

E (W a
) +

X

j

log

 
2 cosh

 
�

yX

a=1

W a
j

!!1

A (S6)

The reference configuration is traced out in this representation, but we can compute its most probable value
by just computing ˜Wj = sign

Py
a=1
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j . It is often the case that, when the parameters are chosen appropriately,

E
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)ia, i.e. that the energy of the center is lower than that of the group of replicas. In fact, we found
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Figure 1. Replicated Simulated Annealing on the perceptron, comparison be-
tween the interacting version (i.e. which seeks regions of high solution density) and
the non-interacting version (i.e. standard SA), at ↵ = 0.3 using y = 3 replicas.
With optimized annealing/scoping parameters, the minimum number of iterations
required to find a solution scales exponentially with N for the standard case, and
polynomially for the interacting case. 10 samples were tested for each value of N
(the same samples in both cases). The bars represent averages and standard devia-
tions (taken in logarithmic scale) while the lines represent fits. The interacting case
was fitted by a function aNb with a ' 0.13, b ' 1.7, while the non-interacting

case was fitted by a function aNbecN
d
with a ' 0.2, b ' 1.5, c ' 6.6 · 10�4

, d ' 1.1. Data is not available for the non-interacting case at N = 6401 since
we couldn’t solve any of the problems in a reasonable time (the extrapolated value
according to the fit is ⇠ 3 · 109). The two data sets are slightly shifted relative to
each other for presentation purposes. All the details are reported in the SI.

configuration space. The simplest demonstration of this prin-
ciple is by sampling the configurations space with the Monte
Carlo method, and lowering the temperature via a Simulated
Annealing (SA) procedure, until either a zero of the energy
or a “give-up condition” is reached. For simplicity, we used
the ensemble in which the reference configuration is traced
out, and we compared our method to the case in which the
interaction between the replicas is absent (i.e. � = 0, which is
equivalent to running y parallel independent standard Simu-
lated Annealings). Besides the annealing procedure, in which
� is gradually increased during the simulation, we also used a
“scoping” procedure, which consists also in gradually increas-
ing the interaction �, with the effect of reducing the average
distance between the replicas. Intuitively, this corresponds to
exploring the energy landscape on progressively finer scales.
Additionally, we found that, interestingly, the effect of the in-
teraction among replicas can be almost entirely accounted for
by adding a prior on the choice of the moves within an other-
wise standard Metropolis scheme, while still maintaining the
detailed balance condition (of course, this reduces to the stan-
dard Metropolis rule for � = 0). The sampling technique is
described in the SI, where we include all other technical details
and the parameters used for the simulations.

In figure [1], we show the results for the perceptron; an
analogous figure for the committee machine, with similar re-
sults, is shown in SI, figure S1. The analysis of the scaling
with N demonstrates that the interaction is crucial to find-
ing a solution in polynomial time: the non-interacting ver-
sion scales exponentially and it rapidly becomes impossible
to find solutions in reasonable times. Our tests also indi-
cate that the difference in performance between the interact-
ing and non-interacting cases widens greatly with increasing
↵. [SHOW THIS? ALSO: DENSE STATES? takes a
looong time...]

As mentioned above, this scheme bears strong similarities to
the Entropy-driven Monte Carlo algorithm that we proposed
in [2], which uses BP to estimate the local entropy around a

given configuration. The main advantage of using a replicated
system is that it avoids the need to use BP, which makes the
procedure much simpler and more general. On the other hand,
in systems where BP is able to provide a reasonable estimate of
the local entropy, it can do so directly at a given temperature,
and thus avoids the need to thermalize the replicas. There-
fore, the landscape explored by the replicated SA and EdMC
is in principle different, and it is possible that the latter has
fewer local minima; this however does not seem to be an issue
for the neural network systems we considered here.

Replicated Gradient Descent
Monte Carlo methods are computationally expensive, and may
be infeasible for large systems. One simple alternative general
method for finding minima of the energy is using Gradient De-
scent (GD) or one of its many variants. Indeed, GD – and in
particular Stochastic GD (SGD) – is the basis of virtually all
recent successful “deep learning” techniques in Machine Learn-
ing. The two main issues with using GD are that is does not
offer in general any guarantee to be able to find a global min-
imum, and that convergence may be slow (in particular for
some of the variables, cf. the “vanishing gradient” problem
that affects deep NN architectures). Additionally, when train-
ing a NN for the purpose of inferring (generalizing) a rule from
a set of examples, it is in general unclear how the properties of
the local minima of the energy on the training set are related
to the energy of the test set, i.e., to the generalization error.

GD is defined on differentiable systems, and thus it cannot
be applied directly to the case of systems with discrete vari-
ables that we consider here. One possible workaround is to
introduce a two-level scheme, consisting in using two sets of
variables, a continuous one W and a discrete one W , related
by a discretization procedure W = discr (W), and in comput-
ing the gradient @E (W ) over the discrete set while applying
it to the continuous set: W  W � ⌘@E (W ) (where ⌘ is a
gradient step, also called learning rate in the NN context). In
the case of the single-layer perceptron with binary synapses
and using the energy definition provided above, and if the
gradient is computed one pattern at a time (in NN parlance:
using SGD with a minibatch size of 1), this procedure leads to
the so-called “Clipped Perceptron” algorithm (CP). This algo-
rithm is not able to find a solution to the training problem in
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Figure 2. Replicated Stochastic Gradient descent on a fully-connected committee
machine with N = 1605 synapses and K = 5 units in the second layer, compar-
ison between the non-interacting (i.e. standard SGD) and interacting versions, using
y = 7 replicas and a minibatch size of 80 patterns. Each point shows averages
and standard deviations on 10 samples with optimal choice of the parameters, as a
function of the training set size. Top: minimum training error rate achieved after 104

epochs. Bottom: number of epochs required to find a solution. Only the cases with
100% success rate are shown (note that the interacting case at ↵ = 0.6 has 50%
success rate but an error rate of just 0.07%).
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Replicated Stochastic Gradient Descent
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where now the auxiliary quantities W are discretized: if they are initialized as odd integers, they remain odd integers
throughout the learning process. This is the so-called “Clipped Perceptron” (CP) rule, which is the same as the
Perceptron rule (“in case of error, update the weights in the direction of the pattern, otherwise do nothing”) except
that the weights which are used are clipped to make them binary. Notably, the CP rule by itself does not scale well
with N (see [2]); it is however possible to make it efficient (see [3]) by a very small modification of eq. (S28):
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+ 2W t

i ⇢ (t) (S29)

where ⇢ (t) 2 {0, 1} is a stochastic binary variable which is set to 1 with a probability / N�1/2. We refer to this
modified update rule as “CP plus reinforcement” (CP+R) since the extra term is always added in the direction of the
current variable state.

In the two-layer case (K > 1) the computation of the gradient is more complicated; it is however simpler than the
computation of the energy shift which was necessary for Simulated Annealing (Algorithm 1), since we only consider
infinitesimal variations when computing the gradient. The resulting expression is:
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i.e. the gradient is non-zero only in case of error, and only for those units k which contribute to the energy computation
(which turn up in the first cµ terms of the sorted vector sµ). Again, since this gradient can take only 3 possible values,
we could set ⌘ = 4 and use discretized odd variables for the W.

It is interesting to point out that a slight variation of this update rule in which only the first, least-wrong unit is
affected, i.e. in which the condition (1 + 2sµcµ  �

µ
k) is changed to (1 + 2sµ

1

 �

µ
k), was used in [4] with good results

on a real-world learning task, provided that a reinforcement term analogous to the one in eq. (S29) was added. Note
that, in the later stages of learning, when the overall energy is low, it is very likely that cµ  1, implying that the
simplification used in [4] likely has a negligible effect. The simplified version, when used in the continuous case, also
goes under the name of “least action” rule [REF].

Having computed the gradient of E (W ) for each system, the extension to the replicated system is rather straight-
forward, since the energy of the replicated system (with the traced-out center) is:
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and therefore the gradient just has an additional term:
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Note that the trace operation brings the parameter � into account. Using ⌘0 = �
�⌘ as control parameter, the update

equation (S26) for a replica a becomes (we omit the unit index k for simplicity):
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In the limit �, � ! 1, ⌘0 stays finite, while the tanh reduces to a sign.
The expression of eq. (S33) is derived straightforwardly, gives good results and is the one that we have used in the

tests show in the main text and below. It could be noted, however, that the two-level precision of the variables used
in the algorithm introduces some artifacts. As a clear example, in the case of a single replica (y = 1) or, more in
general, when the replica indices W a

i are all aligned, we would expect the interaction term to vanish, while this is not
the case except at � = 1.
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and therefore the gradient just has an additional term:
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Note that the trace operation brings the parameter � into account. Using ⌘0 = �
�⌘ as control parameter, the update

equation (S26) for a replica a becomes (we omit the unit index k for simplicity):
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In the limit �, � ! 1, ⌘0 stays finite, while the tanh reduces to a sign.
The expression of eq. (S33) is derived straightforwardly, gives good results and is the one that we have used in the

tests show in the main text and below. It could be noted, however, that the two-level precision of the variables used
in the algorithm introduces some artifacts. As a clear example, in the case of a single replica (y = 1) or, more in
general, when the replica indices W a

i are all aligned, we would expect the interaction term to vanish, while this is not
the case except at � = 1.
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where now the auxiliary quantities W are discretized: if they are initialized as odd integers, they remain odd integers
throughout the learning process. This is the so-called “Clipped Perceptron” (CP) rule, which is the same as the
Perceptron rule (“in case of error, update the weights in the direction of the pattern, otherwise do nothing”) except
that the weights which are used are clipped to make them binary. Notably, the CP rule by itself does not scale well
with N (see [2]); it is however possible to make it efficient (see [3]) by a very small modification of eq. (S28):
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where ⇢ (t) 2 {0, 1} is a stochastic binary variable which is set to 1 with a probability / N�1/2. We refer to this
modified update rule as “CP plus reinforcement” (CP+R) since the extra term is always added in the direction of the
current variable state.

In the two-layer case (K > 1) the computation of the gradient is more complicated; it is however simpler than the
computation of the energy shift which was necessary for Simulated Annealing (Algorithm 1), since we only consider
infinitesimal variations when computing the gradient. The resulting expression is:
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i.e. the gradient is non-zero only in case of error, and only for those units k which contribute to the energy computation
(which turn up in the first cµ terms of the sorted vector sµ). Again, since this gradient can take only 3 possible values,
we could set ⌘ = 4 and use discretized odd variables for the W.

It is interesting to point out that a slight variation of this update rule in which only the first, least-wrong unit is
affected, i.e. in which the condition (1 + 2sµcµ  �
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k) is changed to (1 + 2sµ
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k), was used in [4] with good results

on a real-world learning task, provided that a reinforcement term analogous to the one in eq. (S29) was added. Note
that, in the later stages of learning, when the overall energy is low, it is very likely that cµ  1, implying that the
simplification used in [4] likely has a negligible effect. The simplified version, when used in the continuous case, also
goes under the name of “least action” rule [REF].

Having computed the gradient of E (W ) for each system, the extension to the replicated system is rather straight-
forward, since the energy of the replicated system (with the traced-out center) is:
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and therefore the gradient just has an additional term:
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Note that the trace operation brings the parameter � into account. Using ⌘0 = �
�⌘ as control parameter, the update

equation (S26) for a replica a becomes (we omit the unit index k for simplicity):
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In the limit �, � ! 1, ⌘0 stays finite, while the tanh reduces to a sign.
The expression of eq. (S33) is derived straightforwardly, gives good results and is the one that we have used in the

tests show in the main text and below. It could be noted, however, that the two-level precision of the variables used
in the algorithm introduces some artifacts. As a clear example, in the case of a single replica (y = 1) or, more in
general, when the replica indices W a

i are all aligned, we would expect the interaction term to vanish, while this is not
the case except at � = 1.
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where now the auxiliary quantities W are discretized: if they are initialized as odd integers, they remain odd integers
throughout the learning process. This is the so-called “Clipped Perceptron” (CP) rule, which is the same as the
Perceptron rule (“in case of error, update the weights in the direction of the pattern, otherwise do nothing”) except
that the weights which are used are clipped to make them binary. Notably, the CP rule by itself does not scale well
with N (see [2]); it is however possible to make it efficient (see [3]) by a very small modification of eq. (S28):
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where ⇢ (t) 2 {0, 1} is a stochastic binary variable which is set to 1 with a probability / N�1/2. We refer to this
modified update rule as “CP plus reinforcement” (CP+R) since the extra term is always added in the direction of the
current variable state.

In the two-layer case (K > 1) the computation of the gradient is more complicated; it is however simpler than the
computation of the energy shift which was necessary for Simulated Annealing (Algorithm 1), since we only consider
infinitesimal variations when computing the gradient. The resulting expression is:
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i.e. the gradient is non-zero only in case of error, and only for those units k which contribute to the energy computation
(which turn up in the first cµ terms of the sorted vector sµ). Again, since this gradient can take only 3 possible values,
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that, in the later stages of learning, when the overall energy is low, it is very likely that cµ  1, implying that the
simplification used in [4] likely has a negligible effect. The simplified version, when used in the continuous case, also
goes under the name of “least action” rule [REF].
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and therefore the gradient just has an additional term:
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Note that the trace operation brings the parameter � into account. Using ⌘0 = �
�⌘ as control parameter, the update

equation (S26) for a replica a becomes (we omit the unit index k for simplicity):
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In the limit �, � ! 1, ⌘0 stays finite, while the tanh reduces to a sign.
The expression of eq. (S33) is derived straightforwardly, gives good results and is the one that we have used in the

tests show in the main text and below. It could be noted, however, that the two-level precision of the variables used
in the algorithm introduces some artifacts. As a clear example, in the case of a single replica (y = 1) or, more in
general, when the replica indices W a

i are all aligned, we would expect the interaction term to vanish, while this is not
the case except at � = 1.
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Figure 1. Replicated Simulated Annealing on the perceptron, comparison be-
tween the interacting version (i.e. which seeks regions of high solution density) and
the non-interacting version (i.e. standard SA), at ↵ = 0.3 using y = 3 replicas.
With optimized annealing/scoping parameters, the minimum number of iterations
required to find a solution scales exponentially with N for the standard case, and
polynomially for the interacting case. 10 samples were tested for each value of N
(the same samples in both cases). The bars represent averages and standard devia-
tions (taken in logarithmic scale) while the lines represent fits. The interacting case
was fitted by a function aNb with a ' 0.13, b ' 1.7, while the non-interacting

case was fitted by a function aNbecN
d
with a ' 0.2, b ' 1.5, c ' 6.6 · 10�4

, d ' 1.1. Data is not available for the non-interacting case at N = 6401 since
we couldn’t solve any of the problems in a reasonable time (the extrapolated value
according to the fit is ⇠ 3 · 109). The two data sets are slightly shifted relative to
each other for presentation purposes. All the details are reported in the SI.

configuration space. The simplest demonstration of this prin-
ciple is by sampling the configurations space with the Monte
Carlo method, and lowering the temperature via a Simulated
Annealing (SA) procedure, until either a zero of the energy
or a “give-up condition” is reached. For simplicity, we used
the ensemble in which the reference configuration is traced
out, and we compared our method to the case in which the
interaction between the replicas is absent (i.e. � = 0, which is
equivalent to running y parallel independent standard Simu-
lated Annealings). Besides the annealing procedure, in which
� is gradually increased during the simulation, we also used a
“scoping” procedure, which consists also in gradually increas-
ing the interaction �, with the effect of reducing the average
distance between the replicas. Intuitively, this corresponds to
exploring the energy landscape on progressively finer scales.
Additionally, we found that, interestingly, the effect of the in-
teraction among replicas can be almost entirely accounted for
by adding a prior on the choice of the moves within an other-
wise standard Metropolis scheme, while still maintaining the
detailed balance condition (of course, this reduces to the stan-
dard Metropolis rule for � = 0). The sampling technique is
described in the SI, where we include all other technical details
and the parameters used for the simulations.

In figure [1], we show the results for the perceptron; an
analogous figure for the committee machine, with similar re-
sults, is shown in SI, figure S1. The analysis of the scaling
with N demonstrates that the interaction is crucial to find-
ing a solution in polynomial time: the non-interacting ver-
sion scales exponentially and it rapidly becomes impossible
to find solutions in reasonable times. Our tests also indi-
cate that the difference in performance between the interact-
ing and non-interacting cases widens greatly with increasing
↵. [SHOW THIS? ALSO: DENSE STATES? takes a
looong time...]

As mentioned above, this scheme bears strong similarities to
the Entropy-driven Monte Carlo algorithm that we proposed
in [2], which uses BP to estimate the local entropy around a

given configuration. The main advantage of using a replicated
system is that it avoids the need to use BP, which makes the
procedure much simpler and more general. On the other hand,
in systems where BP is able to provide a reasonable estimate of
the local entropy, it can do so directly at a given temperature,
and thus avoids the need to thermalize the replicas. There-
fore, the landscape explored by the replicated SA and EdMC
is in principle different, and it is possible that the latter has
fewer local minima; this however does not seem to be an issue
for the neural network systems we considered here.

Replicated Gradient Descent
Monte Carlo methods are computationally expensive, and may
be infeasible for large systems. One simple alternative general
method for finding minima of the energy is using Gradient De-
scent (GD) or one of its many variants. Indeed, GD – and in
particular Stochastic GD (SGD) – is the basis of virtually all
recent successful “deep learning” techniques in Machine Learn-
ing. The two main issues with using GD are that is does not
offer in general any guarantee to be able to find a global min-
imum, and that convergence may be slow (in particular for
some of the variables, cf. the “vanishing gradient” problem
that affects deep NN architectures). Additionally, when train-
ing a NN for the purpose of inferring (generalizing) a rule from
a set of examples, it is in general unclear how the properties of
the local minima of the energy on the training set are related
to the energy of the test set, i.e., to the generalization error.

GD is defined on differentiable systems, and thus it cannot
be applied directly to the case of systems with discrete vari-
ables that we consider here. One possible workaround is to
introduce a two-level scheme, consisting in using two sets of
variables, a continuous one W and a discrete one W , related
by a discretization procedure W = discr (W), and in comput-
ing the gradient @E (W ) over the discrete set while applying
it to the continuous set: W  W � ⌘@E (W ) (where ⌘ is a
gradient step, also called learning rate in the NN context). In
the case of the single-layer perceptron with binary synapses
and using the energy definition provided above, and if the
gradient is computed one pattern at a time (in NN parlance:
using SGD with a minibatch size of 1), this procedure leads to
the so-called “Clipped Perceptron” algorithm (CP). This algo-
rithm is not able to find a solution to the training problem in
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Figure 2. Replicated Stochastic Gradient descent on a fully-connected committee
machine with N = 1605 synapses and K = 5 units in the second layer, compar-
ison between the non-interacting (i.e. standard SGD) and interacting versions, using
y = 7 replicas and a minibatch size of 80 patterns. Each point shows averages
and standard deviations on 10 samples with optimal choice of the parameters, as a
function of the training set size. Top: minimum training error rate achieved after 104

epochs. Bottom: number of epochs required to find a solution. Only the cases with
100% success rate are shown (note that the interacting case at ↵ = 0.6 has 50%
success rate but an error rate of just 0.07%).
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the case of random patterns, but simple (although non-trivial)
variants of it are (see [3, 4]). In particular one of the variants,
called CP+R [4], simply consists in adding a stochastic rein-
forcement update W  W + rW where r is appropriately
chosen. The two-level SGD procedure with our definition of
the energy can be extended to two-layer networks, and a sim-
plified version of the resulting algorithm with the additional
reinforcement update was shown in [1] to be able to achieve
near-state-of-the-art performance on the MNIST database [5].
The details of the analysis that shows that SGD and the CP-
like algorithms are equivalent is provided in the SI. The two-
level SGD approach was also more recently – and explicitly –
applied to multi-layer binary networks with excellent results
in [6, 7, 8], along with an array of additional heuristic mod-
ifications of the SGD algorithm that have become standard
in application-driven works (e.g. batch renormalization). In
those cases, however, the back-propagation of the gradient was
performed differently, either because the output of each unit
was not binary [6] or as a workaround for the use of a different
definition for the energy, which required the introduction of
additional heuristic mechanisms [7, 8].

Almost all the above-mentioned results are purely heuristic
(the exception being CP+R on single-layer networks in the
on-line generalization setting, which we don’t consider in the
present work). Indeed, even just using the two-level SGD is
heuristic in this context. Nevertheless, here we demonstrate
that, as in the case of SA of the previous section, replicat-
ing the system and adding a time-dependent interaction term,
i.e. performing the gradient descent over the Hamiltonian de-
fined in eq. [5], leads to a noticeable improvement in the per-
formance of the algorithm, and that when a solution is found it
is indeed part of a dense region, as expected. We showed in [1]
that solutions belonging to maximally dense regions have bet-
ter generalization properties with respect to other solutions;
in other words, they are less prone to overfitting.

In figure 2 we show the results for a fully connected com-
mittee machine, which show that the introduction of the in-
teraction term greatly improves the capacity of the network
(from 0.3 to almost 0.6), finds configurations with a lower er-
ror rate even when it fails to solve the problem, and generally
requires less presentations of the dataset (epochs). The graph
show the results for y = 7 replicas in which the gradient is
computed for every 80 patterns (the so-called minibatch size),
but we observed the same general trend for all cases, even with
minibatch sizes of 1 (in the SI figure S2 we show the results
for y = 3 and minibatch size 10). We also observed the same
effect in the perceptron, where this algorithm has a capacity
exceeding 0.7. All technical details are provided in the SI.

[Maybe show that reinforcement can be used in
place of the interaction (see also next section), i.e. that
CP+R is doing kind of the same thing?]

It is interesting to note that a very similar approach – a repli-
cated system in which each replica is attracted towards a ref-
erence configuration, called Elastic Averaged SGD (EASGD)
– was proposed in [9] using deep convolutional networks with
continuous variables, as a heuristic way to exploit parallel com-
puting environments under communication constraints. Al-
though it is difficult in that case to fully disentangle the effect
of replicating the system from the other heuristics (in par-
ticular the use of “momentum” in the GD update), their re-
sults clearly demonstrate a benefit of introducing the replicas
in terms of training error, test error and convergence time.
It seems therefore plausible that, despite the great difference
in complexity between their network and the simple models
studied in this paper, the general underlying reason for the
effectiveness of the method is the same, i.e. the existence of
accessible robust low-energy states in the space of configura-

tions. Joint work with L. Bottou and Y. LeCun is under way
in order to test this hypothesis in a more controlled setting.

Replicated Belief Propagation
Belief Propagation (or Sum-Product) is an iterative message-
passing method that can be used to describe a probability dis-
tribution over an instance described by a factor graph in the
Bethe-Peierls approximation. The accuracy of the approxima-
tion relies on the assumption that, when removing an interac-
tion from the network, the nodes involved in that interaction
become effectively independent. In the terms of statistical
physics of disordered systems, this assumption requires that
Replica Symmetry (RS) holds at the level of the statistical
ensemble from which the problem instance is drawn.

BP can be heuristically modified in various ways and turned
into a solver algorithm instead [REFS]. One particularly ef-
fective scheme to this end is the addition of a “reinforcement”1
term: a time-dependent local field is introduced for each vari-
able, proportional to its own marginal probability as computed
in the previous iteration step, and is gradually increased un-
til the whole system is completely polarized. This scheme is
quite general, leads to very good results in a variety of differ-
ent problems [REFS], and can even be used in cases in which
unmodified BP would not converge or would provide a very
poor approximation. In the case of the single layer binary
network such as those considered in this paper, it can reach a
capacity of ↵ ' 0.75 [10], which is consistent with the value
at which the structure of solution-dense regions break [1].

The reason for the effectiveness of the reinforced BP is not
entirely clear. Intuitively, the process progressively focuses on
smaller and smaller regions of the configuration space; the re-
gion to focus on is determined from the current estimate of the
distribution, by looking into the “most promising” direction.
This process has thus some qualitative similarities with the
search for dense regions described in the previous sections, in
particular in the replicated SA algorithm. As we shall see, it
is in fact possible to make a more precise analogy.

It is indeed possible to write BP equations for the system
described by eq. [3]. There are in this case two equivalent
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Figure 3. A. Portion of a BP factor graph for a replicated variable Wj with
y = 3 replicas and a reference configuration W ?

j . The dashed lines represent edges

with the rest of the factor graph. The squares represent the interactions �W ?
j W

a
j .

All BP messages (arrows) are assumed to be the same in corresponding edges. B.
Transformed graph which represents the same graph as in A but exploits the symme-
try to reduce the number of nodes, keeping only one representative per replica. The
hexagon represents a pseudo-self-interaction, i.e. it expresses the fact that m?!j
depends on mj!? and is parametrized by � and y.

1note that this is quite di↵erent from the reinforcement used in the CP+R algorithm described
above
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assume that each replica of the system behaves in 
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regardless of the replica index. …single system, which 
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now also exchanges messages with y − 1 identical 
copies of itself through an auxiliary variable (which we 
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approaches: the first is to use the local entropy as the en-
ergy function, using a second-level BP to estimate the local
entropy itself. This approach is very similar to the 1RSB
cavity equations (also called Survey Propagation) described
in [11]. The second approach is to replicate the system, con-
sidering N vector variables

�
W

a
j

 y

a=1
of length y, and assum-

ing an internal replica symmetry for each variable, i.e. that
all marginals are invariant under permutation of the replica
indices: Pj

��
W

a
j

 y

a=1

�
= Pj

�Py
a=1 W

a
j

�
. The result in both

cases is the same (this will be shown in a technical work, in
preparation, where the connection between the large devia-
tions measure and the 1RSB equilibrium description is also
made explicit). Since BP assumes replica symmetry, however,
the resulting message passing algorithm reproduces very well
the analytical results at the RS level. As explained in [1],
however, these results are wrong, in particular for high values
of ↵, � and y, due to the onset of replica-symmetry-breaking
effects. Indeed, as a consequence, this algorithm is not a good
candidate as a solver. A more correct description – which
could then lead to a more controlled solver – would thus re-
quire a third level of BP equations, or equivalently an assump-
tion of symmetry-breaking in the structure of the marginals
Pj

��
W

a
j

 y

a=1

�
.

Fortunately, it turns out that that there is a different way
of applying BP to the replicated system, leading to an effi-
cient solver which is both very similar to the reinforced BP
algorithm and reasonably well described by the theoretical re-
sults. Instead of considering the joint distribution over all
replicated variables at a certain site j, we simply replicate the
original factor graph y times; then, for each site j, we add an
extra variable W

?
j , and y interactions, between each variable

W

a
j and W

?
j . Finally, since the problem is symmetric, we as-

sume that each replica of the system behaves in exactly the
same way, and therefore that the same messages are exchanged
along the edges of the graph regardless of the replica index.
This assumption allows us to work only with a single system,
which is identical to the original one except that each variable
now also exchanges messages with y � 1 identical copies of
itself through an auxiliary variable (which we can just trace
away at this point). The procedure is shown graphically in
fig. 3. At each iteration step t, each variable receives an extra
message of the form:

m

t+1
?!j = tanh

�
(y � 1) tanh

�1 �
m

t
j!? tanh �

��
tanh � [6]

where m

t
j!? is the cavity magnetization resulting from the

rest of the factor graph at time t. Note that, even though we
started from a system of y replicas, after the transformation
we are no longer constrained to keep y in the integer domain.
The reinforced BP, in contrast, would have a term of the form

m

t+1
?!j = tanh

�
⇢ tanh

�1 �
m

t
j

��
[7]

The latter equation uses a single parameter ⇢  1 instead of
two, and is expressed in terms of the total magnetization m

t
j

instead of the cavity magnetization m

t
j!?. Despite the differ-

ences, the effect of these two terms is qualitatively the same,
and it can even be made quantitatively very close, e.g. by set-
ting � = tanh

�1
⇢ and y = 1 +

�
⇢� ⇢

2
�
�1 (see SI; note that

with this y diverges for high �).
Indeed, the algorithm obtained from eq. [6] can be used

as a solver – by gradually increasing � and y – with perfor-
mance essentially identical to that of reinforced BP. It is also
interesting, however, to compare its results at fixed values of
y and � with the analytical predictions in the 1RSB scheme
(which was fully derived in [2]). In particular, fig. FIG shows
that the estimate of the local entropy is generally good up
to ...ETC TODO..., while fig. FIG shows that the aver-
age overlap between replicas (defined as q =

1
N

P
j W

a
j W

b
j )

is close to q0 (the average overlap between replicas belonging
to different states) for low �, but it becomes close to q1 (the
average overlap between replicas in the same state) at high
�. This suggests that the algorithm has spontaneously broken
the replica symmetry, choosing one of the possible states of
high local entropy. Within the state, replica symmetry holds,
thus the algorithm is able to eventually find a solution to the
problem.

Therefore, although this algorithm is not fully understood
from the theoretical point of view, it offers a valuable insight
into the reason for the effectiveness of adding a reinforcement
term to the BP equations.

Discussion
In this paper, we have presented a general scheme that can be
used to bias the search for optima that enhances the weight of
large, accessible states. Although the underlying theoretical
description is not easy to treat analytically, the method we
propose is very simple – replicate the system and introduce
an interaction between the replicas – and versatile, in that it
can be generally applied to a number of different optimization
algorithms. We demonstrated this by applying the method to
Simulated Annealing, Gradient Descent and Belief Propaga-
tion, but it is clear that the list of possible applications may
be much longer. The intuitive interpretation of the method is
also quite straightforward: an interacting ensemble of coupled
systems is less likely to get trapped in narrow minima, and will
instead be attracted towards wide regions of good (and mostly
equivalent) configurations, thus naturally implementing a kind
of robustness to details of the configurations.

Indeed, the usefulness of this kind of search depends on the
details of the problem under study. Here we have mainly fo-
cused on the problem of training neural networks, for a num-
ber of reasons. The first is that, at least in the case of single
layer networks, we had analytical and numerical evidence that
dense, accessible states exist and are crucial for learning, and
we could compare our findings with analytical results. The
second is that the general problem of training neural networks
seems like a natural candidate for this type of analysis: there
has been in recent years a sort of collective search in the space
of heuristics, driven by impressive results obtained in practi-
cal applications and mainly guided by intuition; this search is
naturally biased towards accessible states with good general-
ization properties, and it seems reasonable to describe these
accessible states as regions of high local entropy, i.e. wide,
very robust energy minima. Here we showed a simple way to
exploit the existence of such states efficiently, whatever the
optimization algorithm used. This description sheds light on
previously known algorithms and can be used to improve them
or design new algorithms entirely. Further work is required to
determine whether the same type of phenomenon that we ob-
served here in simple models actually generalizes to the deep
and complex networks commonly used nowadays in machine
learning applications (the performance boost obtained by the
EASGD algorithm of [9] being a first indication in this direc-
tion), and to investigate further ways to improve the perfor-
mance of learning algorithms, or to overcome constraints (such
as being limited to very low-precision computations).

It is also natural to consider other classes of problems in
which this analysis may be relevant. One application would
be solving other constraint satisfaction problems. For exam-
ple, in [2] we demonstrated that the EdMC algorithm can be
successfully applied to the random K-satisfiability problem,
even though we had to resort to a rough estimate of the local
entropy due to replica symmetry breaking effects. We have
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riety of different problems, and can even be used in cases in
which unmodified BP would not converge or would provide a
very poor approximation (see e.g. [30]). In the case of the
single layer binary network such as those considered in this
paper, it can reach a capacity of ↵ ' 0.75 [29], which is con-
sistent with the value at which the structure of solution-dense
regions breaks [12].

The reason for the effectiveness of the reinforced BP is not
clear. Intuitively, the process progressively focuses on smaller
and smaller regions of the configuration space; the region to
focus on is determined from the current estimate of the distri-
bution, by looking into the “most promising” direction. This
process has thus some qualitative similarities with the search
for dense regions described in the previous sections. This anal-
ogy can be made precise by writing the BP equations for the
system described by eq. [3]. There are in this case two equiv-
alent approaches: the first is to use the local entropy as the
energy function, using a second-level BP to estimate the local
entropy itself. This approach is very similar to the so called 1-
step replica-symmetry-greaking (1RSB) cavity equations (see
[14] for a general introduction). The second approach is to
replicate the system, considering N vector variables

�
W

a
j

 y

a=1
of length y, and assuming an internal symmetry for each vari-
able, i.e. that all marginals are invariant under permutation of
the replica indices: Pj

��
W

a
j

 y

a=1

�
= Pj

�Py
a=1 W

a
j

�
. The re-

sult in both cases is the same (this will be shown in a technical
work, in preparation, where the connection between the large
deviations measure and the 1RSB equilibrium description is
also made explicit). Since BP assumes replica symmetry, the
resulting message passing algorithm reproduces very well the
analytical results at the RS level. As explained in [12], these
results can however become wrong, in particular for high val-
ues of ↵, � and y, due to the onset of correlations (the so
called replica-symmetry-breaking – RSB – effect [14]). More
specifically, in this model the RS solution assumes that there
is a single dense region comprising the RE, while the occur-
rence of RSB effects imply that there are several maximally
dense regions. As a consequence this algorithm is not a very
good candidate as a solver. A more correct description – which
could then lead to a more controlled solver – would thus re-
quire a third level of BP equations, or equivalently an assump-
tion of symmetry-breaking in the structure of the marginals
Pj

��
W

a
j

 y

a=1

�
.
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Figure 3. A. Portion of a BP factor graph for a replicated variable Wj with
y = 3 replicas and a reference configuration W ?

j . The dashed lines represent edges

with the rest of the factor graph. The squares represent the interactions �W ?
j W

a
j .

All BP messages (arrows) are assumed to be the same in corresponding edges. B.
Transformed graph which represents the same graph as in A but exploits the symme-
try to reduce the number of nodes, keeping only one representative per replica. The
hexagon represents a pseudo-self-interaction, i.e. it expresses the fact that m?!j
depends on mj!? and is parametrized by � and y.

Fortunately, it turns out that that there is a different way
of applying BP to the replicated system, leading to an effi-
cient solver which is both very similar to the reinforced BP
algorithm and reasonably well described by the theoretical re-
sults. Instead of considering the joint distribution over all
replicated variables at a certain site j, we simply replicate the
original factor graph y times; then, for each site j, we add an
extra variable W

?
j , and y interactions, between each variable

W

a
j and W

?
j . Finally, since the problem is symmetric, we as-

sume that each replica of the system behaves in exactly the
same way, and therefore that the same messages are exchanged
along the edges of the graph regardless of the replica index.
This assumption allows us to work only with a single system,
which is identical to the original one except that each variable
now also exchanges messages with y � 1 identical copies of
itself through an auxiliary variable (which we can just trace
away at this point). The procedure is shown graphically in
fig. 3. At each iteration step t, each variable receives an extra
message of the form:

m

t+1
?!j = tanh

�
(y � 1) tanh

�1 �
m

t
j!? tanh �

��
tanh � [6]

where m

t
j!? is the cavity magnetization resulting from the

rest of the factor graph at time t. Note that, even though we
started from a system of y replicas, after the transformation
we are no longer constrained to keep y in the integer domain.
The reinforced BP [29], in contrast, would have a term of the
form:

m

t+1
?!j = tanh

�
⇢ tanh

�1 �
m

t
j

��
[7]

The latter equation uses a single parameter ⇢  1 instead of
two, and is expressed in terms of the total magnetization m

t
j

instead of the cavity magnetization m

t
j!?. Despite these dif-

ferences, these two terms induce exactly the same BP fixed
points if we set � ! 1 and y = (1� ⇢)

�1; furthermore, even
choosing slightly different mappings (e.g. � = tanh

�1
�p

⇢

�

and y =

2�⇢
1�⇢ ) can lead to update rules with the same qualita-

tive behavior and very similar quantitative effects, such that
the performances of the resulting algorithm are hardly distin-
guishable. The proofs and details of the mapping are provided
in the SI. In this sense, we therefore have derived a qualitative
explanation of the effectiveness if reinforced BP, and a gen-
eralization of its update rule, in the context of the search for
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riety of different problems, and can even be used in cases in
which unmodified BP would not converge or would provide a
very poor approximation (see e.g. [30]). In the case of the
single layer binary network such as those considered in this
paper, it can reach a capacity of ↵ ' 0.75 [29], which is con-
sistent with the value at which the structure of solution-dense
regions breaks [12].

The reason for the effectiveness of the reinforced BP is not
clear. Intuitively, the process progressively focuses on smaller
and smaller regions of the configuration space; the region to
focus on is determined from the current estimate of the distri-
bution, by looking into the “most promising” direction. This
process has thus some qualitative similarities with the search
for dense regions described in the previous sections. This anal-
ogy can be made precise by writing the BP equations for the
system described by eq. [3]. There are in this case two equiv-
alent approaches: the first is to use the local entropy as the
energy function, using a second-level BP to estimate the local
entropy itself. This approach is very similar to the so called 1-
step replica-symmetry-greaking (1RSB) cavity equations (see
[14] for a general introduction). The second approach is to
replicate the system, considering N vector variables
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of length y, and assuming an internal symmetry for each vari-
able, i.e. that all marginals are invariant under permutation of
the replica indices: Pj
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. The re-

sult in both cases is the same (this will be shown in a technical
work, in preparation, where the connection between the large
deviations measure and the 1RSB equilibrium description is
also made explicit). Since BP assumes replica symmetry, the
resulting message passing algorithm reproduces very well the
analytical results at the RS level. As explained in [12], these
results can however become wrong, in particular for high val-
ues of ↵, � and y, due to the onset of correlations (the so
called replica-symmetry-breaking – RSB – effect [14]). More
specifically, in this model the RS solution assumes that there
is a single dense region comprising the RE, while the occur-
rence of RSB effects imply that there are several maximally
dense regions. As a consequence this algorithm is not a very
good candidate as a solver. A more correct description – which
could then lead to a more controlled solver – would thus re-
quire a third level of BP equations, or equivalently an assump-
tion of symmetry-breaking in the structure of the marginals
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Figure 3. A. Portion of a BP factor graph for a replicated variable Wj with
y = 3 replicas and a reference configuration W ?

j . The dashed lines represent edges

with the rest of the factor graph. The squares represent the interactions �W ?
j W

a
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All BP messages (arrows) are assumed to be the same in corresponding edges. B.
Transformed graph which represents the same graph as in A but exploits the symme-
try to reduce the number of nodes, keeping only one representative per replica. The
hexagon represents a pseudo-self-interaction, i.e. it expresses the fact that m?!j
depends on mj!? and is parametrized by � and y.

Fortunately, it turns out that that there is a different way
of applying BP to the replicated system, leading to an effi-
cient solver which is both very similar to the reinforced BP
algorithm and reasonably well described by the theoretical re-
sults. Instead of considering the joint distribution over all
replicated variables at a certain site j, we simply replicate the
original factor graph y times; then, for each site j, we add an
extra variable W

?
j , and y interactions, between each variable

W

a
j and W

?
j . Finally, since the problem is symmetric, we as-

sume that each replica of the system behaves in exactly the
same way, and therefore that the same messages are exchanged
along the edges of the graph regardless of the replica index.
This assumption allows us to work only with a single system,
which is identical to the original one except that each variable
now also exchanges messages with y � 1 identical copies of
itself through an auxiliary variable (which we can just trace
away at this point). The procedure is shown graphically in
fig. 3. At each iteration step t, each variable receives an extra
message of the form:

m

t+1
?!j = tanh

�
(y � 1) tanh

�1 �
m

t
j!? tanh �

��
tanh � [6]

where m

t
j!? is the cavity magnetization resulting from the

rest of the factor graph at time t. Note that, even though we
started from a system of y replicas, after the transformation
we are no longer constrained to keep y in the integer domain.
The reinforced BP [29], in contrast, would have a term of the
form:

m

t+1
?!j = tanh

�
⇢ tanh

�1 �
m

t
j

��
[7]

The latter equation uses a single parameter ⇢  1 instead of
two, and is expressed in terms of the total magnetization m

t
j

instead of the cavity magnetization m

t
j!?. Despite these dif-

ferences, these two terms induce exactly the same BP fixed
points if we set � ! 1 and y = (1� ⇢)

�1; furthermore, even
choosing slightly different mappings (e.g. � = tanh

�1
�p

⇢

�

and y =

2�⇢
1�⇢ ) can lead to update rules with the same qualita-

tive behavior and very similar quantitative effects, such that
the performances of the resulting algorithm are hardly distin-
guishable. The proofs and details of the mapping are provided
in the SI. In this sense, we therefore have derived a qualitative
explanation of the effectiveness if reinforced BP, and a gen-
eralization of its update rule, in the context of the search for

Footline Author PNAS Issue Date Volume Issue Number 5

fBP becomes a solver looking for high density regions of solution. Interesting 
convergence properties (to be further studied).



i
i

“accessible” — 2016/5/15 — 22:18 — page 6 — #6 i
i

i
i

i
i

Therefore, although this algorithm is not fully understood
from the theoretical point of view, it offers a valuable insight
into the reason for the effectiveness of adding a reinforcement
term to the BP equations. Furthermore, it can be used to
estimate the point up to which accessible dense states exist,
even in cases, like multi-layer networks, where analytical cal-
culations are prohibitively complex.

Figure 5 shows the result of experiments performed on a
committee machine with the same architecture and with the
same y of Fig. 2. The implementation closely follows [28]
with the addition of the self-interaction eq. [6], except that
great care is required to correctly estimate the local entropy
at large �, due to numerical issues (see SI). The figure shows
that BPpR finds that dense states (where the local entropy
curves approach the upper bound at small distances) exist up
to nearly ↵ = 0.6, and that when it finds those dense states it
is correspondingly able to find a solution, in perfect agreement
with the results of the replicated gradient descent algorithm.

Discussion
In this paper, we have presented a general scheme that can
be used to bias the search for low energy configurations that
enhances the weight of large, accessible states. Although the
underlying theoretical description is based on a non trivial
large deviation measure, its concrete implementation is very
simple – replicate the system and introduce an interaction be-
tween the replicas – and versatile, in that it can be generally
applied to a number of different optimization algorithms or
stochastic processes. We demonstrated this by applying the
method to Simulated Annealing, Gradient Descent and Belief
Propagation, but it is clear that the list of possible applica-
tions may be much longer. The intuitive interpretation of the
method is also quite straightforward: an interacting ensem-
ble of coupled systems is less likely to get trapped in narrow
minima, and will instead be attracted towards wide regions
of good (and mostly equivalent) configurations, thus naturally
implementing a kind of robustness to details of the configura-
tions.

Indeed, the usefulness of this kind of search depends on the
details of the problem under study. Here we have mainly fo-
cused on the problem of training neural networks, for a num-
ber of reasons. The first is that, at least in the case of single
layer networks, we had analytical and numerical evidence that
dense, accessible states exist and are crucial for learning, and
we could compare our findings with analytical results. The
second is that the general problem of training neural networks
seems like a natural candidate for this type of analysis: there
has been in recent years a sort of collective search in the space
of heuristics, driven by impressive results obtained in practi-
cal applications and mainly guided by intuition; this search is
naturally biased towards accessible states with good general-
ization properties, and it seems reasonable to describe these
accessible states as regions of high local entropy, i.e. wide,
very robust energy minima. Here we showed a simple way to
exploit the existence of such states efficiently, whatever the
optimization algorithm used. This description sheds light on
previously known algorithms and can be used to improve them
or design new algorithms entirely. Further work is required to
determine whether the same type of phenomenon that we ob-
served here in simple models actually generalizes to the deep
and complex networks commonly used nowadays in machine
learning applications (the performance boost obtained by the
EASGD algorithm of [23] being a first indication in this di-

rection), and to investigate further ways to improve the per-
formance of learning algorithms, or to overcome constraints
(such as being limited to very low-precision computations).

It is also natural to consider other classes of problems in
which this analysis may be relevant. One application would
be solving other constraint satisfaction problems. For exam-
ple, in [11] we demonstrated that the EdMC algorithm can
be successfully applied to the random K-satisfiability prob-
lem, even though we had to resort to a rough estimate of
the local entropy due to replica symmetry breaking effects.
We have clear indications, which we omitted for brevity, that
the replicated BP algorithm presented above (as well as re-
inforced BP) [UPDATE NAME] is also effective and effi-
cient, with performances similar to the Survey Propagation
algorithm [8]. Another intriguing application would be the
possibility to subsume in a general scheme a class of out-of-
equilibirum processes which are attracted to accessible states.
In other words, when describing a system which is unable to
reach equilibrium in the usual thermodynamic sense or it is
driven by some stochastic perturbation, it is still likely that
its stationary state can be characterized by a large local en-
tropy.
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agement and interesting discussions about future directions for this work. CBa, CL
and RZ acknowledge the European Research Council for grant n° 267915.
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Figure 5. Results of BPpR on a committee machine with N = 1605, K = 5,
y = 7, increasing � from 0 to 2.5, averages on 10 samples. Top: local entropy
versus distance to the reference W ? for various ↵ (error bars not shown for clarity).
The topmost gray curve (↵ = 0) is an upper bound, representing the case where all
configurations within some distance are solutions. Inset: enlargement of the region
near the origin indicated by the rectangle in the main plot. This shows that dense
states exist up to almost ↵ = 0.6: at this value of ↵, dense states are only found
for a subset of the samples (in which case a solution is also found). Negative local
entropies (curve at ↵ = 0.7) are unphysical, and BP fails shortly after finding such
values. Bottom: error rates as a function of tanh (�). For ↵  0.6, all curves
eventually get to 0. However, only 7 out of 10 samples reached a su�ciently high
� at ↵ = 0.6, while in 3 cases the BP equations failed. The curve for ↵ = 0.7
is interrupted because BP failed for all samples, in each case shortly after reaching a
negative local entropy. The plateaus at ↵ = 0.4 and ↵ = 0.5 are regions where
the solution to the BPpR equations are symmetric with respect to the permutation of
the hidden units: BPpR spontaneously breaks that symmetry as well.
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Therefore, although this algorithm is not fully understood
from the theoretical point of view, it offers a valuable insight
into the reason for the effectiveness of adding a reinforcement
term to the BP equations. Furthermore, it can be used to
estimate the point up to which accessible dense states exist,
even in cases, like multi-layer networks, where analytical cal-
culations are prohibitively complex.

Figure 5 shows the result of experiments performed on a
committee machine with the same architecture and with the
same y of Fig. 2. The implementation closely follows [28]
with the addition of the self-interaction eq. [6], except that
great care is required to correctly estimate the local entropy
at large �, due to numerical issues (see SI). The figure shows
that BPpR finds that dense states (where the local entropy
curves approach the upper bound at small distances) exist up
to nearly ↵ = 0.6, and that when it finds those dense states it
is correspondingly able to find a solution, in perfect agreement
with the results of the replicated gradient descent algorithm.

Discussion
In this paper, we have presented a general scheme that can
be used to bias the search for low energy configurations that
enhances the weight of large, accessible states. Although the
underlying theoretical description is based on a non trivial
large deviation measure, its concrete implementation is very
simple – replicate the system and introduce an interaction be-
tween the replicas – and versatile, in that it can be generally
applied to a number of different optimization algorithms or
stochastic processes. We demonstrated this by applying the
method to Simulated Annealing, Gradient Descent and Belief
Propagation, but it is clear that the list of possible applica-
tions may be much longer. The intuitive interpretation of the
method is also quite straightforward: an interacting ensem-
ble of coupled systems is less likely to get trapped in narrow
minima, and will instead be attracted towards wide regions
of good (and mostly equivalent) configurations, thus naturally
implementing a kind of robustness to details of the configura-
tions.

Indeed, the usefulness of this kind of search depends on the
details of the problem under study. Here we have mainly fo-
cused on the problem of training neural networks, for a num-
ber of reasons. The first is that, at least in the case of single
layer networks, we had analytical and numerical evidence that
dense, accessible states exist and are crucial for learning, and
we could compare our findings with analytical results. The
second is that the general problem of training neural networks
seems like a natural candidate for this type of analysis: there
has been in recent years a sort of collective search in the space
of heuristics, driven by impressive results obtained in practi-
cal applications and mainly guided by intuition; this search is
naturally biased towards accessible states with good general-
ization properties, and it seems reasonable to describe these
accessible states as regions of high local entropy, i.e. wide,
very robust energy minima. Here we showed a simple way to
exploit the existence of such states efficiently, whatever the
optimization algorithm used. This description sheds light on
previously known algorithms and can be used to improve them
or design new algorithms entirely. Further work is required to
determine whether the same type of phenomenon that we ob-
served here in simple models actually generalizes to the deep
and complex networks commonly used nowadays in machine
learning applications (the performance boost obtained by the
EASGD algorithm of [23] being a first indication in this di-

rection), and to investigate further ways to improve the per-
formance of learning algorithms, or to overcome constraints
(such as being limited to very low-precision computations).

It is also natural to consider other classes of problems in
which this analysis may be relevant. One application would
be solving other constraint satisfaction problems. For exam-
ple, in [11] we demonstrated that the EdMC algorithm can
be successfully applied to the random K-satisfiability prob-
lem, even though we had to resort to a rough estimate of
the local entropy due to replica symmetry breaking effects.
We have clear indications, which we omitted for brevity, that
the replicated BP algorithm presented above (as well as re-
inforced BP) [UPDATE NAME] is also effective and effi-
cient, with performances similar to the Survey Propagation
algorithm [8]. Another intriguing application would be the
possibility to subsume in a general scheme a class of out-of-
equilibirum processes which are attracted to accessible states.
In other words, when describing a system which is unable to
reach equilibrium in the usual thermodynamic sense or it is
driven by some stochastic perturbation, it is still likely that
its stationary state can be characterized by a large local en-
tropy.
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Figure 5. Results of BPpR on a committee machine with N = 1605, K = 5,
y = 7, increasing � from 0 to 2.5, averages on 10 samples. Top: local entropy
versus distance to the reference W ? for various ↵ (error bars not shown for clarity).
The topmost gray curve (↵ = 0) is an upper bound, representing the case where all
configurations within some distance are solutions. Inset: enlargement of the region
near the origin indicated by the rectangle in the main plot. This shows that dense
states exist up to almost ↵ = 0.6: at this value of ↵, dense states are only found
for a subset of the samples (in which case a solution is also found). Negative local
entropies (curve at ↵ = 0.7) are unphysical, and BP fails shortly after finding such
values. Bottom: error rates as a function of tanh (�). For ↵  0.6, all curves
eventually get to 0. However, only 7 out of 10 samples reached a su�ciently high
� at ↵ = 0.6, while in 3 cases the BP equations failed. The curve for ↵ = 0.7
is interrupted because BP failed for all samples, in each case shortly after reaching a
negative local entropy. The plateaus at ↵ = 0.4 and ↵ = 0.5 are regions where
the solution to the BPpR equations are symmetric with respect to the permutation of
the hidden units: BPpR spontaneously breaks that symmetry as well.
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neighborhood of x roughly equivalent in loss, this term points towards the wider one because hx0; ·i
is closer to it. This results in a net gradient that takes SGD towards wider valleys. Moreover, if we
unroll the SGLD steps used to compute (x�hx0; ·i) (cf. line 5 in Alg. 1), it resembles one large step
in the direction of the (noisy) average gradient around the current weights x and Entropy-SGD thus
looks similar to averaged SGD in the literature (Polyak & Juditsky, 1992; Bottou, 2012). These two
phenomena intuitively explain the improved generalization performance of Entropy-SGD.

4.2 ALGORITHM AND IMPLEMENTATION DETAILS

Alg. 1 provides the pseudo-code for one iteration of the Entropy-SGD algorithm. At each iteration,
lines 3-6 perform L iterations of Langevin dynamics to estimate µ =

⌦
x0;X`

↵
. The weights x are

updated with the modified gradient on line 7.

Algorithm 1: Entropy-SGD algorithm
Input : current weights x, Langevin iterations L
Hyper-parameters : scope g , learning rate h , SGLD step size h

0

// SGLD iterations;
1 x0,µ  x;
2 for ` L do
3 X`  sample mini-batch;

4 dx0  1
m Âm

i=1 —x0 f
�
x0; x`i

�
� g (x� x0);

5 x0  x0 �h

0 dx0+
p

h

0
e N(0, I);

6 µ  (1�a)µ +a x0;

// Update weights;
7 x  x�h g (x�µ)

Let us now discuss a few implementation details. Although we have written Alg. 1 in the classical
SGD setup, we can easily modify it to include techniques such as momentum and gradient pre-
conditioning (Duchi et al., 2011) by changing lines 5 and 7. In our experiments, we have used SGD
with Nesterov’s momentum (Sutskever et al., 2013) and Adam for outer and inner loops with similar
qualitative results. We use exponential averaging to estimate µ in the SGLD loop (line 6) with
a = 0.75 so as to put more weight on the later samples, this is akin to a burn-in in standard SGLD.

We set the number of SGLD iterations to L = [5,20] depending upon the complexity of the dataset.
The learning rate h

0 is fixed for all our experiments to values between h

0 2 [0.1,1]. We found that
annealing h

0 (for instance, setting it to be the same as the outer learning rate h) is detrimental; indeed
a small learning rate leads to poor estimates of local entropy towards the end of training where
they are most needed. The parameter e in SGLD on line 5 is the thermal noise and we fix this to
e 2 [10�4,10�3]. Having thus fixed L,e and h

0, an effective heuristic to tune the remaining parameter
g is to match the magnitude of the gradient of the local entropy term, viz. g (x�µ), to the gradient
for vanilla SGD, viz. m�1 Âm

i=1 —x f (x; x`i).

4.3 SCOPING OF g

The scope g is fixed in Alg. 1. For large values of g , the SGLD updates happen in a small neighborhood
of the current parameters x while low values of g allow the inner SGLD to explore further away from
x. In the context of the discussion in Sec. 3, a “reverse-annealing” of the scope g , i.e. increasing g

as training progresses has the effect of exploring the energy landscape on progressively finer scales.
We call this process “scoping” which is similar to that of Baldassi et al. (2016b) and use a simple
exponential schedule given by

g(t) = g0 (1+ g1)
t ;

for the t th parameter update. We have experimented with linear, quadratic and bounded exponential
(g0 (1� e�tt)) scoping schedules and obtained qualitatively similar results.

Scoping of g unfortunately interferes with the learning rate annealing that is popular in deep learning,
this is a direct consequence of the update step on line 7 of Alg. 1. In practice, we therefore scale
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baseline approaches in practice. Simultaneously it reduces the communication overhead between the
master and the local workers while at the same time it maintains high-quality performance measured
by the test error. The new algorithm applies to deep learning settings such as parallelized training of
convolutional neural networks.

The article is organized as follows. Section 2 explains the problem setting, Section 3 presents
the synchronous EASGD algorithm and its asynchronous and momentum-based variants, Section 4
provides stability analysis of EASGD and ADMM in the round-robin scheme, Section 5 shows ex-
perimental results and Section 6 concludes. The Supplement contains additional material including
additional theoretical analysis.

2 Problem setting

Consider minimizing a function F (x) in a parallel computing environment [7] with p 2 N workers
and a master. In this paper we focus on the stochastic optimization problem of the following form

min

x

F (x) := E[f(x, ⇠)], (1)

where x is the model parameter to be estimated and ⇠ is a random variable that follows the probabil-
ity distribution P over ⌦ such that F (x) =

R
⌦

f(x, ⇠)P(d⇠). The optimization problem in Equation 1
can be reformulated as follows

min

x

1
,...,x

p
,x̃

pX

i=1

E[f(xi, ⇠i)] +
⇢

2

kxi � x̃k2, (2)

where each ⇠i follows the same distribution P (thus we assume each worker can sample the entire
dataset). In the paper we refer to xi’s as local variables and we refer to x̃ as a center variable. The
problem of the equivalence of these two objectives is studied in the literature and is known as the
augmentability or the global variable consensus problem [8, 9]. The quadratic penalty term ⇢ in
Equation 2 is expected to ensure that local workers will not fall into different attractors that are far
away from the center variable. This paper focuses on the problem of reducing the parameter com-
munication overhead between the master and local workers [10, 2, 11, 12, 13]. The problem of data
communication when the data is distributed among the workers [7, 14] is a more general problem
and is not addressed in this work. We however emphasize that our problem setting is still highly
non-trivial under the communication constraints due to the existence of many local optima [15].

3 EASGD update rule

The EASGD updates captured in resp. Equation 3 and 4 are obtained by taking the gradient descent
step on the objective in Equation 2 with respect to resp. variable xi and x̃,

xi

t+1

= xi

t

� ⌘(gi
t

(xi

t

) + ⇢(xi

t

� x̃
t

)) (3)

x̃
t+1

= x̃
t

+ ⌘

pX

i=1

⇢(xi

t

� x̃
t

), (4)

where gi
t

(xi

t

) denotes the stochastic gradient of F with respect to xi evaluated at iteration t, xi

t

and
x̃
t

denote respectively the value of variables xi and x̃ at iteration t, and ⌘ is the learning rate.

The update rule for the center variable x̃ takes the form of moving average where the average is
taken over both space and time. Denote ↵ = ⌘⇢ and � = p↵, then Equation 3 and 4 become

xi

t+1

= xi

t

� ⌘gi
t

(xi

t

)� ↵(xi

t

� x̃
t

) (5)

x̃
t+1

= (1� �)x̃
t
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1

p

pX

i=1

xi

t

!
. (6)

Note that choosing � = p↵ leads to an elastic symmetry in the update rule, i.e. there exists an
symmetric force equal to ↵(xi

t

� x̃
t

) between the update of each xi and x̃. It has a crucial influ-
ence on the algorithm’s stability as will be explained in Section 4. Also in order to minimize the
staleness [16] of the difference xi

t

� x̃
t

between the center and the local variable, the update for the
master in Equation 4 involves xi

t

instead of xi

t+1

.
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Abstract

We study the problem of stochastic optimization for deep learning in the paral-
lel computing environment under communication constraints. A new algorithm
is proposed in this setting where the communication and coordination of work
among concurrent processes (local workers), is based on an elastic force which
links the parameters they compute with a center variable stored by the parameter
server (master). The algorithm enables the local workers to perform more explo-
ration, i.e. the algorithm allows the local variables to fluctuate further from the
center variable by reducing the amount of communication between local workers
and the master. We empirically demonstrate that in the deep learning setting, due
to the existence of many local optima, allowing more exploration can lead to the
improved performance. We propose synchronous and asynchronous variants of
the new algorithm. We provide the stability analysis of the asynchronous vari-
ant in the round-robin scheme and compare it with the more common parallelized
method ADMM. We show that the stability of EASGD is guaranteed when a simple
stability condition is satisfied, which is not the case for ADMM. We additionally
propose the momentum-based version of our algorithm that can be applied in both
synchronous and asynchronous settings. Asynchronous variant of the algorithm
is applied to train convolutional neural networks for image classification on the
CIFAR and ImageNet datasets. Experiments demonstrate that the new algorithm
accelerates the training of deep architectures compared to DOWNPOUR and other
common baseline approaches and furthermore is very communication efficient.

1 Introduction

One of the most challenging problems in large-scale machine learning is how to parallelize the
training of large models that use a form of stochastic gradient descent (SGD) [1]. There have been
attempts to parallelize SGD-based training for large-scale deep learning models on large number
of CPUs, including the Google’s Distbelief system [2]. But practical image recognition systems
consist of large-scale convolutional neural networks trained on few GPU cards sitting in a single
computer [3, 4]. The main challenge is to devise parallel SGD algorithms to train large-scale deep
learning models that yield a significant speedup when run on multiple GPU cards.

In this paper we introduce the Elastic Averaging SGD method (EASGD) and its variants. EASGD
is motivated by quadratic penalty method [5], but is re-interpreted as a parallelized extension of the
averaging SGD algorithm [6]. The basic idea is to let each worker maintain its own local parameter,
and the communication and coordination of work among the local workers is based on an elastic
force which links the parameters they compute with a center variable stored by the master. The center
variable is updated as a moving average where the average is taken in time and also in space over
the parameters computed by local workers. The main contribution of this paper is a new algorithm
that provides fast convergent minimization while outperforming DOWNPOUR method [2] and other
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baseline approaches in practice. Simultaneously it reduces the communication overhead between the
master and the local workers while at the same time it maintains high-quality performance measured
by the test error. The new algorithm applies to deep learning settings such as parallelized training of
convolutional neural networks.

The article is organized as follows. Section 2 explains the problem setting, Section 3 presents
the synchronous EASGD algorithm and its asynchronous and momentum-based variants, Section 4
provides stability analysis of EASGD and ADMM in the round-robin scheme, Section 5 shows ex-
perimental results and Section 6 concludes. The Supplement contains additional material including
additional theoretical analysis.

2 Problem setting

Consider minimizing a function F (x) in a parallel computing environment [7] with p 2 N workers
and a master. In this paper we focus on the stochastic optimization problem of the following form

min

x

F (x) := E[f(x, ⇠)], (1)

where x is the model parameter to be estimated and ⇠ is a random variable that follows the probabil-
ity distribution P over ⌦ such that F (x) =

R
⌦

f(x, ⇠)P(d⇠). The optimization problem in Equation 1
can be reformulated as follows

min

x

1
,...,x

p
,x̃

pX

i=1

E[f(xi, ⇠i)] +
⇢

2

kxi � x̃k2, (2)

where each ⇠i follows the same distribution P (thus we assume each worker can sample the entire
dataset). In the paper we refer to xi’s as local variables and we refer to x̃ as a center variable. The
problem of the equivalence of these two objectives is studied in the literature and is known as the
augmentability or the global variable consensus problem [8, 9]. The quadratic penalty term ⇢ in
Equation 2 is expected to ensure that local workers will not fall into different attractors that are far
away from the center variable. This paper focuses on the problem of reducing the parameter com-
munication overhead between the master and local workers [10, 2, 11, 12, 13]. The problem of data
communication when the data is distributed among the workers [7, 14] is a more general problem
and is not addressed in this work. We however emphasize that our problem setting is still highly
non-trivial under the communication constraints due to the existence of many local optima [15].

3 EASGD update rule

The EASGD updates captured in resp. Equation 3 and 4 are obtained by taking the gradient descent
step on the objective in Equation 2 with respect to resp. variable xi and x̃,
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and
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denote respectively the value of variables xi and x̃ at iteration t, and ⌘ is the learning rate.

The update rule for the center variable x̃ takes the form of moving average where the average is
taken over both space and time. Denote ↵ = ⌘⇢ and � = p↵, then Equation 3 and 4 become
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Note that choosing � = p↵ leads to an elastic symmetry in the update rule, i.e. there exists an
symmetric force equal to ↵(xi
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Figure 2: Training and test loss and the test error for the center variable versus a wallclock time for
different communication periods ⌧ on CIFAR dataset with the 7-layer convolutional neural network.

We next explore different number of local workers p from the set p = {4, 8, 16} for the CIFAR
experiment, and p = {4, 8} for the ImageNet experiment9. For the ImageNet experiment we report
the results of one run with the best setting we have found. EASGD and EAMSGD were run with
⌧ = 10 whereas DOWNPOUR and MDOWNPOUR were run with ⌧ = 1. The results are in Figure 3
and 4. For the CIFAR experiment, it’s noticeable that the lowest achievable test error by either
EASGD or EAMSGD decreases with larger p. This can potentially be explained by the fact that
larger p allows for more exploration of the parameter space. In the Supplement, we discuss further
the trade-off between exploration and exploitation as a function of the learning rate (section 9.5) and
the communication period (section 9.6). Finally, the results obtained for the ImageNet experiment
also shows the advantage of EAMSGD over the competitor methods.

6 Conclusion

In this paper we describe a new algorithm called EASGD and its variants for training deep neu-
ral networks in the stochastic setting when the computations are parallelized over multiple GPUs.
Experiments demonstrate that this new algorithm quickly achieves improvement in test error com-
pared to more common baseline approaches such as DOWNPOUR and its variants. We show that
our approach is very stable and plausible under communication constraints. We provide the stability
analysis of the asynchronous EASGD in the round-robin scheme, and show the theoretical advantage
of the method over ADMM. The different behavior of the EASGD algorithm from its momentum-
based variant EAMSGD is intriguing and will be studied in future works.

9For the ImageNet experiment, the training loss is measured on a subset of the training data of size 50,000.

7

CIFAR dataset with the 7-layer convolutional neural network. 
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ABSTRACT

The stochastic gradient descent (SGD) method and its variants are algorithms of
choice for many Deep Learning tasks. These methods operate in a small-batch
regime wherein a fraction of the training data, say 32–512 data points, is sampled
to compute an approximation to the gradient. It has been observed in practice that
when using a larger batch there is a degradation in the quality of the model, as
measured by its ability to generalize. We investigate the cause for this generaliza-
tion drop in the large-batch regime and present numerical evidence that supports
the view that large-batch methods tend to converge to sharp minimizers of the
training and testing functions—and as is well known, sharp minima lead to poorer
generalization. In contrast, small-batch methods consistently converge to flat min-
imizers, and our experiments support a commonly held view that this is due to the
inherent noise in the gradient estimation. We discuss several strategies to attempt
to help large-batch methods eliminate this generalization gap.

1 INTRODUCTION

Deep Learning has emerged as one of the cornerstones of large-scale machine learning. Deep Learn-
ing models are used for achieving state-of-the-art results on a wide variety of tasks including com-
puter vision, natural language processing and reinforcement learning; see (Bengio et al., 2016) and
the references therein. The problem of training these networks is one of non-convex optimization.
Mathematically, this can be represented as:

min

x2Rn
f(x) :=

1

M

MX

i=1

f

i

(x), (1)

where f

i

is a loss function for data point i 2 {1, 2, · · · ,M} which captures the deviation of the
model prediction from the data, and x is the vector of weights being optimized. The process of
optimizing this function is also called training of the network. Stochastic Gradient Descent (SGD)
(Bottou, 1998; Sutskever et al., 2013) and its variants are often used for training deep networks.

⇤Work was performed when author was an intern at Intel Corporation
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forth the following as possible causes for this phenomenon: (i) LB methods over-fit the model; (ii)
LB methods are attracted to saddle points; (iii) LB methods lack the explorative properties of SB
methods and tend to zoom-in on the minimizer closest to the initial point; (iv) SB and LB methods
converge to qualitatively different minimizers with differing generalization properties. The data
presented in this paper supports the last two conjectures.

The main observation of this paper is as follows:

The lack of generalization ability is due to the fact that large-batch methods tend to converge
to sharp minimizers of the training function. These minimizers are characterized by a signif-
icant number of large positive eigenvalues in r2

f(x), and tend to generalize less well. In
contrast, small-batch methods converge to flat minimizers characterized by having numerous
small eigenvalues of r2

f(x). We have observed that the loss function landscape of deep neural
networks is such that large-batch methods are attracted to regions with sharp minimizers and
that, unlike small-batch methods, are unable to escape basins of attraction of these minimizers.

The concept of sharp and flat minimizers have been discussed in the statistics and machine learning
literature. (Hochreiter & Schmidhuber, 1997) (informally) define a flat minimizer x̄ as one for which
the function varies slowly in a relatively large neighborhood of x̄. In contrast, a sharp minimizer x̂
is such that the function increases rapidly in a small neighborhood of x̂. A flat minimum can be de-
scribed with low precision, whereas a sharp minimum requires high precision. The large sensitivity
of the training function at a sharp minimizer negatively impacts the ability of the trained model to
generalize on new data; see Figure 1 for a hypothetical illustration. This can be explained through
the lens of the minimum description length (MDL) theory, which states that statistical models that
require fewer bits to describe (i.e., are of low complexity) generalize better (Rissanen, 1983). Since
flat minimizers can be specified with lower precision than to sharp minimizers, they tend to have bet-
ter generalization performance. Alternative explanations are proffered through the Bayesian view
of learning (MacKay, 1992), and through the lens of free Gibbs energy; see e.g. Chaudhari et al.
(2016).

Flat Minimum Sharp Minimum

Training Function

Testing Function

f(x)

Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss
function and the X-axis the variables (parameters)

2.2 NUMERICAL EXPERIMENTS

In this section, we present numerical results to support the observations made above. To this end,
we make use of the visualization technique employed by (Goodfellow et al., 2014b) and a proposed
heuristic metric of sharpness (Equation (4)). We consider 6 multi-class classification network con-
figurations for our experiments; they are described in Table 1. The details about the data sets and
network configurations are presented in Appendices A and B respectively. As is common for such
problems, we use the mean cross entropy loss as the objective function f .

The networks were chosen to exemplify popular configurations used in practice like AlexNet
(Krizhevsky et al., 2012) and VGGNet (Simonyan & Zisserman, 2014). Results on other networks
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(a) F1 (b) F2

(c) C1 (d) C2

(e) C3 (f) C4

Figure 3: Parametric Plots – Linear (Left vertical axis corresponds to cross-entropy loss, f , and
right vertical axis corresponds to classification accuracy; solid line indicates training data set and
dashed line indicated testing data set); ↵ = 0 corresponds to the SB minimizer and ↵ = 1 to the LB
minimizer.

large cost of evaluating the true objective f . Both tables show a 1–2 order-of-magnitude difference
between the values of our metric for the SB and LB regimes. These results reinforce the view that
the solutions obtained by a large-batch method defines points of larger sensitivity of the training
function. In Appedix E, we describe approaches to attempt to remedy this generalization problem
of LB methods. These approaches include data augmentation, conservative training and adversarial
training. Our preliminary findings show that these approaches help reduce the generalization gap
but still lead to relatively sharp minimizers and as such, do not completely remedy the problem.

Note that Metric 2.1 is closely related to the spectrum of r2
f(x). Assuming ✏ to be small enough,

when A = I

n

, the value (4) relates to the largest eigenvalue of r2
f(x) and when A is randomly

sampled it approximates the Ritz value of r2
f(x) projected onto the column-space of A.
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Table 1: Network Configurations

Name Network Type Architecture Data set
F1 Fully Connected Section B.1 MNIST (LeCun et al., 1998a)
F2 Fully Connected Section B.2 TIMIT (Garofolo et al., 1993)
C1 (Shallow) Convolutional Section B.3 CIFAR-10 (Krizhevsky & Hinton, 2009)
C2 (Deep) Convolutional Section B.4 CIFAR-10
C3 (Shallow) Convolutional Section B.3 CIFAR-100 (Krizhevsky & Hinton, 2009)
C4 (Deep) Convolutional Section B.4 CIFAR-100

and using other initialization strategies, activation functions, and data sets showed similar behavior.
Since the goal of our work is not to achieve state-of-the-art accuracy or time-to-solution on these
tasks but rather to characterize the nature of the minima for LB and SB methods, we only describe
the final testing accuracy in the main paper and ignore convergence trends.

For all experiments, we used 10% of the training data as batch size for the large-batch experiments
and 256 data points for small-batch experiments. We used the ADAM optimizer for both regimes.
Experiments with other optimizers for the large-batch experiments, including ADAGRAD (Duchi
et al., 2011), SGD (Sutskever et al., 2013) and adaQN (Keskar & Berahas, 2016), led to similar
results. All experiments were conducted 5 times from different (uniformly distributed random)
starting points and we report both mean and standard-deviation of measured quantities. The baseline
performance for our setup is presented Table 2. From this, we can observe that on all networks, both
approaches led to high training accuracy but there is a significant difference in the generalization
performance. The networks were trained, without any budget or limits, until the loss function ceased
to improve.

Table 2: Performance of small-batch (SB) and large-batch (LB) variants of ADAM on the 6 networks
listed in Table 1

Training Accuracy Testing Accuracy
Name SB LB SB LB
F1 99.66%± 0.05% 99.92%± 0.01% 98.03%± 0.07% 97.81%± 0.07%

F2 99.99%± 0.03% 98.35%± 2.08% 64.02%± 0.2% 59.45%± 1.05%

C1 99.89%± 0.02% 99.66%± 0.2% 80.04%± 0.12% 77.26%± 0.42%

C2 99.99%± 0.04% 99.99%± 0.01% 89.24%± 0.12% 87.26%± 0.07%

C3 99.56%± 0.44% 99.88%± 0.30% 49.58%± 0.39% 46.45%± 0.43%

C4 99.10%± 1.23% 99.57%± 1.84% 63.08%± 0.5% 57.81%± 0.17%

We emphasize that the generalization gap is not due to over-fitting or over-training as commonly
observed in statistics. This phenomenon manifest themselves in the form of a testing accuracy curve
that, at a certain iterate peaks, and then decays due to the model learning idiosyncrasies of the
training data. This is not what we observe in our experiments; see Figure 2 for the training–testing
curve of the F2 and C1 networks, which are representative of the rest. As such, early-stopping
heuristics aimed at preventing models from over-fitting would not help reduce the generalization
gap. The difference between the training and testing accuracies for the networks is due to the
specific choice of the network (e.g. AlexNet, VGGNet etc.) and is not the focus of this study.
Rather, our goal is to study the source of the testing performance disparity of the two regimes, SB
and LB, on a given network model.

2.2.1 PARAMETRIC PLOTS

We first present parametric 1-D plots of the function as described in (Goodfellow et al., 2014b).
Let x?

s

and x

?

`

indicate the solutions obtained by running ADAM using small and large batch sizes
respectively. We plot the loss function, on both training and testing data sets, along a line-segment
containing the two points. Specifically, for ↵ 2 [�1, 2], we plot the function f(↵x

?

`

+ (1 � ↵)x

?

s

)

and also superimpose the classification accuracy at the intermediate points; see Figure 31. For this
1The code to reproduce the parametric plot on exemplary networks can be found in our GitHub repository:

https://github.com/keskarnitish/large-batch-training.
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Abstract
We introduce a method to train Binarized Neu-
ral Networks (BNNs) - neural networks with bi-
nary weights and activations at run-time. At
training-time the binary weights and activations
are used for computing the parameters gradi-
ents. During the forward pass, BNNs drastically
reduce memory size and accesses, and replace
most arithmetic operations with bit-wise opera-
tions, which is expected to substantially improve
power-efficiency. To validate the effectiveness of
BNNs we conduct two sets of experiments on the
Torch7 and Theano frameworks. On both, BNNs
achieved nearly state-of-the-art results over the
MNIST, CIFAR-10 and SVHN datasets. Last but
not least, we wrote a binary matrix multiplication
GPU kernel with which it is possible to run our
MNIST BNN 7 times faster than with an unopti-
mized GPU kernel, without suffering any loss in
classification accuracy. The code for training and
running our BNNs is available on-line.

Introduction
Deep Neural Networks (DNNs) have substantially pushed
Artificial Intelligence (AI) limits in a wide range of tasks,
including but not limited to object recognition from im-
ages (Krizhevsky et al., 2012; Szegedy et al., 2014), speech
recognition (Hinton et al., 2012; Sainath et al., 2013), sta-

tistical machine translation (Devlin et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015), Atari and Go games
(Mnih et al., 2015; Silver et al., 2016), and even abstract
art (Mordvintsev et al., 2015).

Today, DNNs are almost exclusively trained on one or
many very fast and power-hungry Graphic Processing
Units (GPUs) (Coates et al., 2013). As a result, it is of-
ten a challenge to run DNNs on target low-power devices,
and substantial research efforts are invested in speeding
up DNNs at run-time on both general-purpose (Vanhoucke
et al., 2011; Gong et al., 2014; Romero et al., 2014; Han
et al., 2015) and specialized computer hardware (Farabet
et al., 2011a;b; Pham et al., 2012; Chen et al., 2014a;b;
Esser et al., 2015).

This paper makes the following contributions:

• We introduce a method to train Binarized-Neural-
Networks (BNNs), neural networks with binary
weights and activations, at run-time, and when com-
puting the parameters gradients at train-time (see Sec-
tion 1).

• We conduct two sets of experiments, each imple-
mented on a different framework, namely Torch7
(Collobert et al., 2011) and Theano (Bergstra et al.,
2010; Bastien et al., 2012), which show that it is pos-
sible to train BNNs on MNIST, CIFAR-10 and SVHN
and achieve nearly state-of-the-art results (see Section
2).

• We show that during the forward pass (both at run-
time and train-time), BNNs drastically reduce mem-
ory consumption (size and number of accesses), and
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Table 1. Classification test error rates of DNNs trained on MNIST (MLP architecture without unsupervised pretraining), CIFAR-10
(without data augmentation) and SVHN.

Data set MNIST SVHN CIFAR-10
Binarized activations+weights, during training and test

BNN (Torch7) 1.40% 2.53% 10.15%
BNN (Theano) 0.96% 2.80% 11.40%
Committee Machines’ Array (Baldassi et al., 2015) 1.35% - -

Binarized weights, during training and test
BinaryConnect (Courbariaux et al., 2015) 1.29± 0.08% 2.30% 9.90%

Binarized activations+weights, during test
EBP (Cheng et al., 2015) 2.2± 0.1% - -
Bitwise DNNs (Kim & Smaragdis, 2016) 1.33% - -

Ternary weights, binary activations, during test
(Hwang & Sung, 2014) 1.45% - -

No binarization (standard results)
Maxout Networks (Goodfellow et al.) 0.94% 2.47% 11.68%
Network in Network (Lin et al.) - 2.35% 10.41%
Gated pooling (Lee et al., 2015) - 1.69% 7.62%

Figure 1. Training curves of a ConvNet on CIFAR-10 depend-
ing on the method. The dotted lines represent the training costs
(square hinge losses) and the continuous lines the corresponding
validation error rates. Although BNNs are slower to train, they
are nearly as accurate as 32-bit float DNNs.

and AdaMax variants, which are detailed in Algo-
rithms 3 and 4, whereas in our Theano experiments,
we use vanilla BN and ADAM.

2.1. MLP on MNIST (Theano)

MNIST is an image classification benchmark dataset (Le-
Cun et al., 1998). It consists of a training set of 60K and
a test set of 10K 28 ⇥ 28 gray-scale images represent-
ing digits ranging from 0 to 9. In order for this bench-
mark to remain a challenge, we did not use any convo-
lution, data-augmentation, preprocessing or unsupervised
learning. The MLP we train on MNIST consists of 3 hid-
den layers of 4096 binary units (see Section 1) and a L2-
SVM output layer; L2-SVM has been shown to perform
better than Softmax on several classification benchmarks

Figure 2. Binary weight filters, sampled from of the first convolu-
tion layer. Since we have only 2k

2
unique 2D filters (where k is

the filter size), filter replication is very common. For instance, on
our CIFAR-10 ConvNet, only 42% of the filters are unique.

(Tang, 2013; Lee et al., 2014). We regularize the model
with Dropout (Srivastava, 2013; Srivastava et al., 2014).
The square hinge loss is minimized with the ADAM adap-
tive learning rate method (Kingma & Ba, 2014). We use
an exponentially decaying global learning rate, as per Al-
gorithm 1, and also scale the learning rates of the weights
with their initialization coefficients from (Glorot & Bengio,
2010), as suggested by Courbariaux et al. (2015). We use
Batch Normalization with a minibatch of size 100 to speed
up the training. As is typical, we use the last 10K samples
of the training set as a validation set for early stopping and
model selection. We report the test error rate associated
with the best validation error rate after 1000 epochs (we do
not retrain on the validation set). The results are reported
in Table 1.

2.2. MLP on MNIST (Torch7)

We use a similar architecture as in our Theano experiments,
without dropout, and with 2048 binary units per layer in-
stead of 4096. Additionally, we use the shift base AdaMax

“Although BNNs are slower to train, they are nearly 
as accurate as 32-bit float DNNs. “



Conclusion and what next

out-of-equilibrium  statistical physics and large deviations studies are a  
key framework for understanding learning phenomena

Next algorithmic developments:

• Accessible dense states in DNN, connections with regularization  
techniques (dropout), temporal version of local entropy

• An opportunity for acceleration?

• Simple forms of stochastic learning process

• Learning with low precision weights: can we design new neural hardware?

• Generalization  to unsupervised learning

• …

Theoretical framework:


