Google
Neural Architecture Search with
Reinforcement Learning

Barret Zoph & Quoc Le

Motivation for Architecture Search

Designing neural network architectures is hard

Lots of human efforts go into tuning them

There is not a lot of intuition into how to design them well
Can we try and learn good architectures automatically?

80
75
2 70
>
S 65
—
a
o
60

55

50

WS e »\ﬂ?ﬁe’& N v\’%o”@e A9 sl vc)Q :\'QZ&:\?;L (\’\1'5 X
O
G

o g\ie&e NENG

Gt oV $e‘ N e 20 o
P@V\'P\ ?@6 Q\e,'??\ec)\ ec"$\(\(,eq\(\(,®‘>

Two layers from the famous Inception V4 computer vision model.

Google Canziani et al, 2017 Szegedy et al, 2017

Neural Architecture Search

e Key idea is that we can specify the structure and connectivity of a neural

network by using a configuration string
o [“Filter Width: 5”, “Filter Height: 3", “Num Filters: 24”]

e Ourideaisto use a RNN (“Controller”) to generate this string that specifies a
neural network architecture

e Train this architecture (“Child Network”) to see how well it performs on a
validation set

e Use reinforcement learning to update the parameters of the Controller model
based on the accuracy of the child model

Google

Neural Architecture Search

Sample architecture A
with probability p

[

The controller (RNN)

Google

{

y

Trains a child network
with architecture
A to get accuracy R

J

Compute gradient of p and
scale it by R to update
the controller

Neural Architecture Search for Convolutional Networks

Softmax classifier Controller RNN

N\

Mumherl Filter Filter Stride Stride Number Filter
“ |of Filters|, Height [+ | Width [, | Height [, | Width |\ |of Filters|. | Height [\

TkTJTkT
F AT BT BT YT BT b1

—> > > > > ¥ 2 >
A LA / 4 L A E, L A LA 5
”Llayer MN-1 e Layer N . Layerl\i-f—.l
Embedding

Google

Training with REINFORCE

J(QC) = Ep(al:T;ec)[R]

Google

Training with REINFORCE

Accuracy of architecture on
Parameters of Controller RNN held-out dataset

~
J(0c) = Ep(ay.r:0.) [R]

/

Architecture predicted by the controller RNN
viewed as a sequence of actions

Google

Training with REINFORCE

Accuracy of architecture on
Parameters of Controller RNN held-out dataset

~
J(0c) = Ep(ay.r:0.) [R]

b

Architecture predicted by the controller RNN
viewed as a sequence of actions

a

Ve . J(0:) = Z Ep(ar.r:00) | Vo. 10g Plat|a_1).1:0:)R]

t=1

Google

Training with REINFORCE

Accuracy of architecture on
Parameters of Controller RNN held-out dataset

~
J(0c) = Ep(ay.r:0.) [R]

b

Architecture predicted by the controller RNN
viewed as a sequence of actions

T
Ve . J(0:) = Z Ep(ar.r:00) | Vo. 10g Plat|a_1).1:0:)R]

t=1

m T

Z Z Ve. log P(ai|a—1).1:0:) R

k=1t=1

1
Number of models in minibatch—— m

Google

Distributed Training

Controller
Replica 1

C

Accuracy
R

Parameters

Parameter
Server 1

Parameter
Server 2

Controller
Replica 2

e

Child
Replica 1

Child

Replica 2

Child
Replica

m

Child Child

Replica 1 Replica 2

Child
Replica m

Google

Parameter
Server S

Controller
Replica K

e

Child
Replica 1

Child
Replica 2

Child
Replica m

Overview of Experiments

e Apply this approach to Penn Treebank and CIFAR-10

e Evolve a convolutional neural network on CIFAR-10 and a recurrent neural
network cell on Penn Treebank

e Achieve SOTA on the Penn Treebank dataset and almost SOTA on CIFAR-10
with a smaller and faster network

e Cell found on Penn Treebank beats LSTM baselines on other language modeling
datasets and on machine translation

Google

Neural Architecture Search for CIFAR-10

e We apply Neural Architecture Search to predicting convolutional networks on
CIFAR-10

e Predict the following for a fixed number of layers (15, 20, 13):

o Filter width/height
o Stride width/height
o Number of filters

Google

Neural Architecture Search for CIFAR-10

1,357 [1,357 [1,23] [1,23] [24,36,48,64]

Mumherl Filter Filter Stride Stride Number Filter
“ |of Filters|, Height [+ | Width [, | Height [, | Width |\ |of Filters|. | Height [\

WG N A O N
T AN N N A

l
Y
\ 4
Y
-;;-
A 4
Y
l

pmm

ll

l
Y
h 4
LT
h J
A 4
l

LA .‘4 LA LA A LA LA 4
—> <« : > <«
Layer N-1 Layer N Layer N+1

Google

CIFAR-10 Prediction Method

e Expand search space to include branching and residual connections

e Propose the prediction of skip connections to expand the search space

e Atlayer N, we sample from N-1 sigmoids to determine what layers should be fed
into layer N

e If no layers are sampled, then we feed in the minibatch of images

e At final layer take all layer outputs that have not been connected and
concatenate them

Google

Neural Architecture Search for CIFAR-10

Weight Matrices

//\

P(Layer j is an input to layer i) = sigmt::-id(1,=Ttanh(T/]D"I,.M,.Equ * N + Weurr * B;))

N-1 skip connections

el

Number Anchor | | 0h}wv(ber Filter
\ |of Filters|, | Point [\ p S \ A Of Filters|, | Height |\
YA S g S A BT BN Y
> > > > > > > >
K A Y K A VA A F § [Y '
~. > > > > > > > » —>
LA LA LA LA LA A LA LA LA LA
- - A - <l - - 3 N - A - < ° P
» - » Y
Layer N-1 Layer N Layer N+1

Google

CIFAR-10 Experiment Details

e Use 100 Controller Replicas each training 8 child networks concurrently

e Method uses 800 GPUs concurrently at one time

e Reward given to the Controller is the maximum validation accuracy of the last 5
epochs squared

e Split the 50,000 Training examples to use 45,000 for training and 5,000 for
validation

e FEach child model was trained for 50 epochs

e Run for a total of 12,800 child models

e Used curriculum training for the Controller by gradually increasing the number of
layers sampled

Google

Neural Architecture Search for CIFAR-10

Google

P S
frerrnznal)
==

\

Model | Depth Parameters | Error rate (%)

Network in Network (Lin et al., 2013) - - 8.81
All-CNN (Springenberg et al., 2014) - - 7.25
Deeply Supervised Net (Lee et al., 2015) - - 797
Highway Network (Srivastava et al., 2015) - - 772
Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37
FractalNet (Larsson et al., 2016) 21 38.6M 522
with Dropout/Drop-path 21 38.6M 4.60
ResNet (He et al., 2016a) | 110 1.7M | 6.61
ResNet (reported by Huang et al. (2016c)) | 110 1.7M | 6.41
ResNet with Stochastic Depth (Huang et al., 2016¢) 110 1.7M 5.23
1202 10.2M 491

Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81
28 36.5M 417

ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46
1001 10.2M 4.62

DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, & = 12) Huang et al. (2016a) 100 7.0M 4.10
DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 374
DenseNet-BC (L = 100, k = 40) Huang et al. (2016b) 190 25.6M 3.46
Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50
Neural Architecture Search v2 predicting strides 20 2.5M 6.01
Neural Architecture Search v3 max pooling 39 7.1M 4.47
Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65

5% faster

Recurrent Cell Prediction Method

e Created a search space for search over RNN cells like the LSTM or GRU
e Based our search space off the LSTM cell in that we have a recurrent state and
cell

identity ()

elem_mult

sigmaoid

Google

Recurrent Cell Prediction Method

Cell Search Space Controller RNN Created New Cell

g y g o hy (_;l

Google

Penn Treebank Experiment Details

e Run Neural Architecture Search with our cell prediction method on the Penn
Treebank language modeling dataset

Previous Diagram had a base of 2, in this experiment we used a base of 8
Use 400 Controller Replicas each training 1 child network

Use 400 CPUs concurrently at one time

Run for a total of 15,000 child models

Reward for the Controller is ¢/(validation perplexity)*2

Google

Penn Treebank Results

elem_mult
elem_mult
add =

elem_mult

identity) fanh

sigmaid (% add
Rl Uit tar;?g oid sigmoid tanh sid
elem_ \
9 0 0
X ey Cea Xt by =51
LSTM Cell Neural Architecture Search (NAS) Cell

Google

Penn Treebank Results

Google

Model | Parameters Test Perplexity
Mikolov & Zweig (2012) - KN-5 m? 141.2
Mikolov & Zweig (2012) - KNS5 + cache 2M? 125.7
Mikolov & Zweig (2012) - RNN 6M* 124.7
Mikolov & Zweig (2012) - RNN-LDA ™? 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache oM* 92.0
Pascanu et al. (2013) - Deep RNN 6M 107.5
Cheng et al. (2014) - Sum-Prod Net sMt 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 82.7
Zaremba et al. (2014) - LSTM (large) 66M 78.4
Gal (2015) - Variational LSTM (medium, untied) 20M 79.7
Gal (2015) - Variational LSTM (medium, untied, MC) 20M 78.6
Gal (2015) - Variational LSTM (large, untied) 66M Th.2
Gal (2015) - Variational LSTM (large, untied, MC) 66M 73.4
Kim et al. (2015) - CharCNN 19M 78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings 51M 73.2
Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6
Merity et al. (2016) - Pointer Sentinel-LSTM (medium) 21M 70.9
Inan et al. (2016) - VD-LSTM + REAL (large) 5IM 68.5
Zilly et al. (2016) - Variational RHN, shared embeddings 24M 66.0
Neural Architecture Search with base 8 32M 67.9
Neural Architecture Search with base 8 and shared embeddings 25M 64.0
Neural Architecture Search with base 8 and shared embeddings 54M 62.4

2x as fast

Comparison to Random Search

40

e—e Top_1_unique_models : :
35| e Top_5 unique_models | . ______________________
e—e Top_15_unique_models : :

w
o

N
o

-
o

...

Perplexity Improvement
[\%]
o

7 I A S P

0 5000 10000 15000 20000 25000

Iteration

Google

Transfer Learning on Character Level Language Modeling

RNN Cell Type | Parameters Test Bits Per Character
Ha et al. (2016) - Layer Norm HyperLSTM 4.92M 1.250
Ha et al. (2016) - Layer Norm HyperLSTM Large Embeddings 5.06M 1.253
Ha et al. (2016) - 2-Layer Norm HyperLSTM 14.41M 1.219
Two layer LSTM 6.57M 1.243
Two Layer with New Cell 6.57M 1.228
Two Layer with New Cell 16.28M 1.214

Google

Transfer Learning on Neural Machine Translation

Vi >y, > o <S>
., X 4
\, -

L De,(:d rLSTMS GOOgle Neural Machine

9 Translation

(Wu et al, 2016)

LSTM Cell

\a ers

GPU3

GPU2

GPU1

Model WMT’ 14 en->de

Test Set BLEU
GNMT LSTM 24 1
GNMT NAS Cell 24 .6

Google

