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Motivation for Architecture Search

Designing neural network architectures is hard

Lots of human efforts go into tuning them

There is not a lot of intuition into how to design them well
Can we try and learn good architectures automatically?
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Two layers from the famous Inception V4 computer vision model.

Google Canziani et al, 2017 Szegedy et al, 2017



Neural Architecture Search

e Key idea is that we can specify the structure and connectivity of a neural

network by using a configuration string
o [“Filter Width: 5”, “Filter Height: 3", “Num Filters: 24”]

e Ourideaisto use a RNN (“Controller”) to generate this string that specifies a
neural network architecture

e Train this architecture (“Child Network”) to see how well it performs on a
validation set

e Use reinforcement learning to update the parameters of the Controller model
based on the accuracy of the child model
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Neural Architecture Search

Sample architecture A
with probability p

[

The controller (RNN)
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Neural Architecture Search for Convolutional Networks

Softmax classifier Controller RNN
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Training with REINFORCE

J(QC) = Ep(al:T;ec)[R]
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Training with REINFORCE

Accuracy of architecture on
Parameters of Controller RNN held-out dataset

~
J(0c) = Ep(ay.r:0.) [ R]

/

Architecture predicted by the controller RNN
viewed as a sequence of actions
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Training with REINFORCE

Accuracy of architecture on
Parameters of Controller RNN held-out dataset
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Architecture predicted by the controller RNN
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Training with REINFORCE

Accuracy of architecture on
Parameters of Controller RNN held-out dataset
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Architecture predicted by the controller RNN
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Distributed Training
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Overview of Experiments

e Apply this approach to Penn Treebank and CIFAR-10

e Evolve a convolutional neural network on CIFAR-10 and a recurrent neural
network cell on Penn Treebank

e Achieve SOTA on the Penn Treebank dataset and almost SOTA on CIFAR-10
with a smaller and faster network

e Cell found on Penn Treebank beats LSTM baselines on other language modeling
datasets and on machine translation
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Neural Architecture Search for CIFAR-10

e We apply Neural Architecture Search to predicting convolutional networks on
CIFAR-10

e Predict the following for a fixed number of layers (15, 20, 13):

o Filter width/height
o  Stride width/height
o Number of filters
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Neural Architecture Search for CIFAR-10
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CIFAR-10 Prediction Method

e Expand search space to include branching and residual connections

e Propose the prediction of skip connections to expand the search space

e Atlayer N, we sample from N-1 sigmoids to determine what layers should be fed
into layer N

e If no layers are sampled, then we feed in the minibatch of images

e At final layer take all layer outputs that have not been connected and
concatenate them
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Neural Architecture Search for CIFAR-10

Weight Matrices
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CIFAR-10 Experiment Details

e Use 100 Controller Replicas each training 8 child networks concurrently

e Method uses 800 GPUs concurrently at one time

e Reward given to the Controller is the maximum validation accuracy of the last 5
epochs squared

e Split the 50,000 Training examples to use 45,000 for training and 5,000 for
validation

e FEach child model was trained for 50 epochs

e Run for a total of 12,800 child models

e Used curriculum training for the Controller by gradually increasing the number of
layers sampled
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Neural Architecture Search for CIFAR-10
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Model | Depth  Parameters | Error rate (%)

Network in Network (Lin et al., 2013) - - 8.81
All-CNN (Springenberg et al., 2014) - - 7.25
Deeply Supervised Net (Lee et al., 2015) - - 797
Highway Network (Srivastava et al., 2015) - - 772
Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37
FractalNet (Larsson et al., 2016) 21 38.6M 522
with Dropout/Drop-path 21 38.6M 4.60
ResNet (He et al., 2016a) | 110 1.7M | 6.61
ResNet (reported by Huang et al. (2016c)) | 110 1.7M | 6.41
ResNet with Stochastic Depth (Huang et al., 2016¢) 110 1.7M 5.23
1202 10.2M 491

Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81
28 36.5M 417

ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46
1001 10.2M 4.62

DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, & = 12) Huang et al. (2016a) 100 7.0M 4.10
DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 374
DenseNet-BC (L = 100, k = 40) Huang et al. (2016b) 190 25.6M 3.46
Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50
Neural Architecture Search v2 predicting strides 20 2.5M 6.01
Neural Architecture Search v3 max pooling 39 7.1M 4.47
Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65

5% faster



Recurrent Cell Prediction Method

e Created a search space for search over RNN cells like the LSTM or GRU
e Based our search space off the LSTM cell in that we have a recurrent state and
cell
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Recurrent Cell Prediction Method

Cell Search Space Controller RNN Created New Cell
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Penn Treebank Experiment Details

e Run Neural Architecture Search with our cell prediction method on the Penn
Treebank language modeling dataset

Previous Diagram had a base of 2, in this experiment we used a base of 8
Use 400 Controller Replicas each training 1 child network

Use 400 CPUs concurrently at one time

Run for a total of 15,000 child models

Reward for the Controller is ¢/(validation perplexity)*2
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Penn Treebank Results
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Penn Treebank Results

Google

Model | Parameters  Test Perplexity
Mikolov & Zweig (2012) - KN-5 m? 141.2
Mikolov & Zweig (2012) - KNS5 + cache 2M? 125.7
Mikolov & Zweig (2012) - RNN 6M* 124.7
Mikolov & Zweig (2012) - RNN-LDA ™? 113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache oM* 92.0
Pascanu et al. (2013) - Deep RNN 6M 107.5
Cheng et al. (2014) - Sum-Prod Net sMt 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 82.7
Zaremba et al. (2014) - LSTM (large) 66M 78.4
Gal (2015) - Variational LSTM (medium, untied) 20M 79.7
Gal (2015) - Variational LSTM (medium, untied, MC) 20M 78.6
Gal (2015) - Variational LSTM (large, untied) 66M Th.2
Gal (2015) - Variational LSTM (large, untied, MC) 66M 73.4
Kim et al. (2015) - CharCNN 19M 78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings 51M 73.2
Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6
Merity et al. (2016) - Pointer Sentinel-LSTM (medium) 21M 70.9
Inan et al. (2016) - VD-LSTM + REAL (large) 5IM 68.5
Zilly et al. (2016) - Variational RHN, shared embeddings 24M 66.0
Neural Architecture Search with base 8 32M 67.9
Neural Architecture Search with base 8 and shared embeddings 25M 64.0
Neural Architecture Search with base 8 and shared embeddings 54M 62.4

2x as fast



Comparison to Random Search
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Transfer Learning on Character Level Language Modeling

RNN Cell Type | Parameters  Test Bits Per Character
Ha et al. (2016) - Layer Norm HyperLSTM 4.92M 1.250
Ha et al. (2016) - Layer Norm HyperLSTM Large Embeddings 5.06M 1.253
Ha et al. (2016) - 2-Layer Norm HyperLSTM 14.41M 1.219
Two layer LSTM 6.57M 1.243
Two Layer with New Cell 6.57M 1.228
Two Layer with New Cell 16.28M 1.214
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Transfer Learning on Neural Machine Translation
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