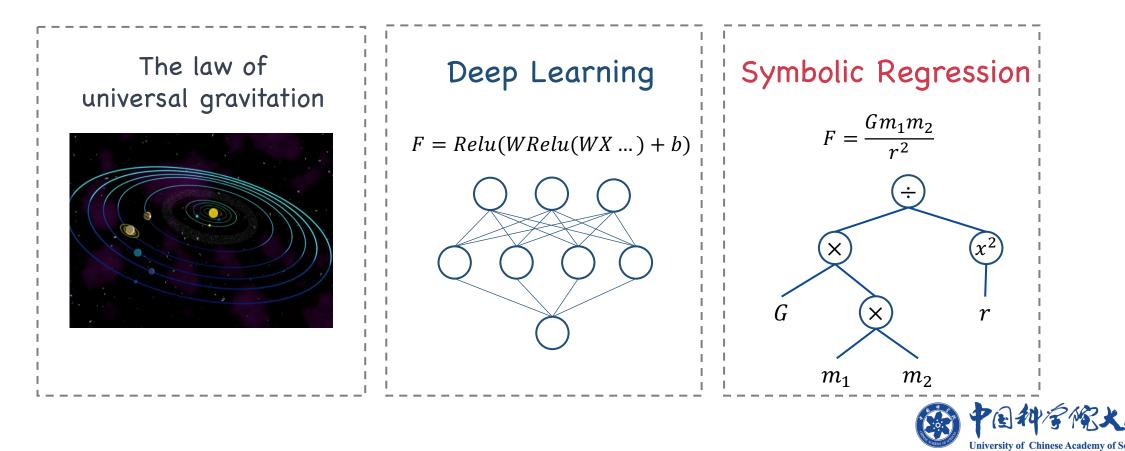


Transformer-based model for symbolic regression via joint supervised learning

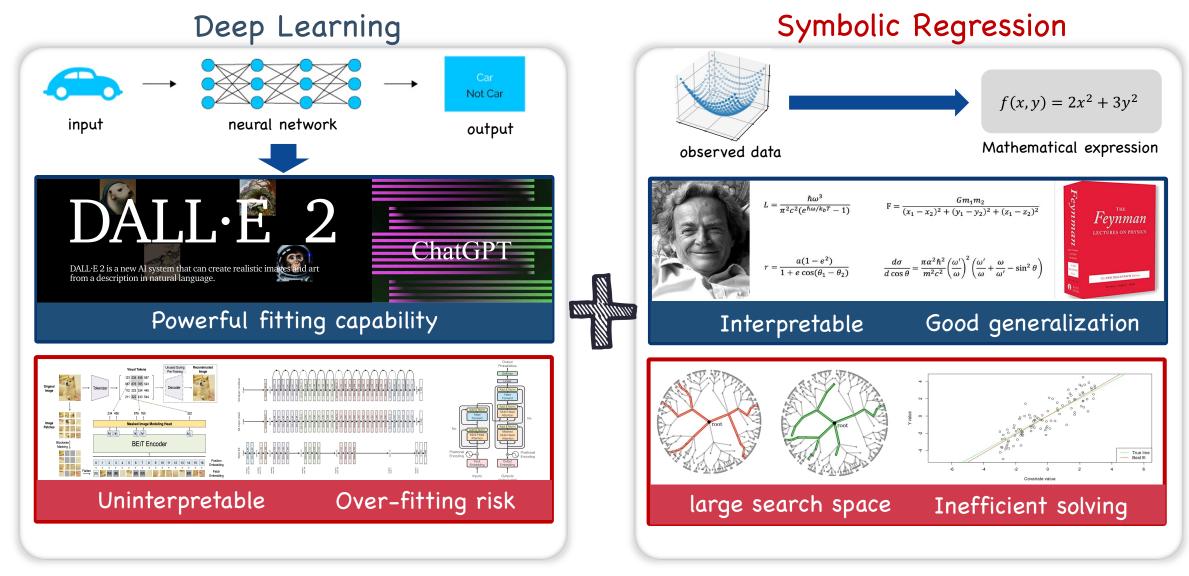
Wenqiang Li Institute of Semiconductors, Chinese Academy of Sciences

What is Symbolic Regression?

Given a dataset (X, y), where each feature $X_i \in \mathbb{R}^n$ and target $y_i \in \mathbb{R}$, the goal of symbolic regression is to identify a function f (i.e., $y \approx f(X)$: $\mathbb{R}^n \to \mathbb{R}$) that best fits the dataset, where the functional form of f is a short closed-form mathematical expression.



Deep Learning Vs Symbolic Regression



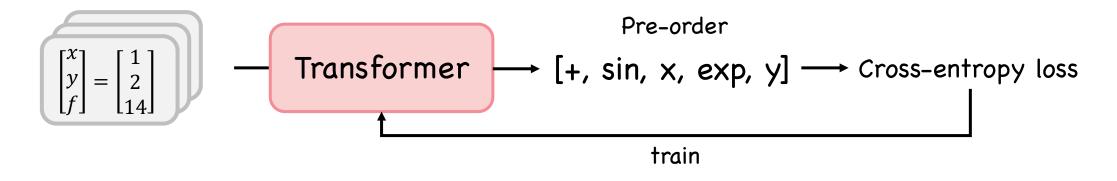
Deep Symbolic Regression

Typical approach

- 1. Encode data points
- 2. Predict the pre-order traversal
- 3. Compute cross-entropy loss

SymbolicGPT [Valipour et al., 2021]

NeSymRes [Biggio et al., 2021]

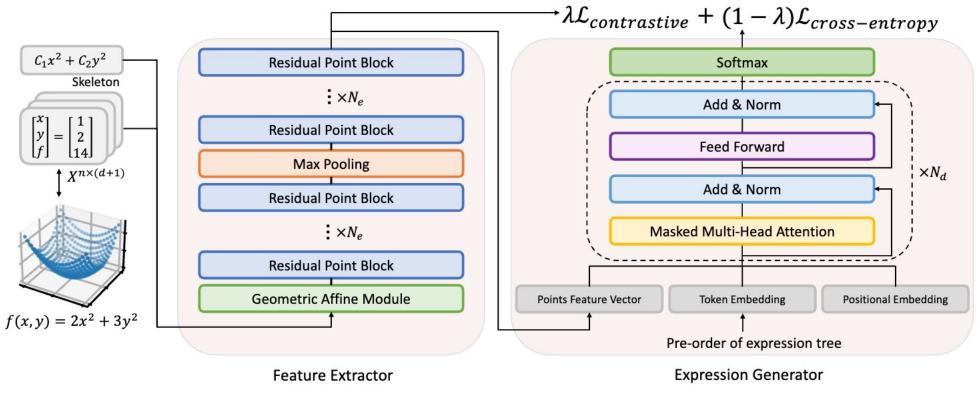


Shortcomings:

Low-quality feature extraction from data points

Skeletons provide ill-defined supervision

Our Approach

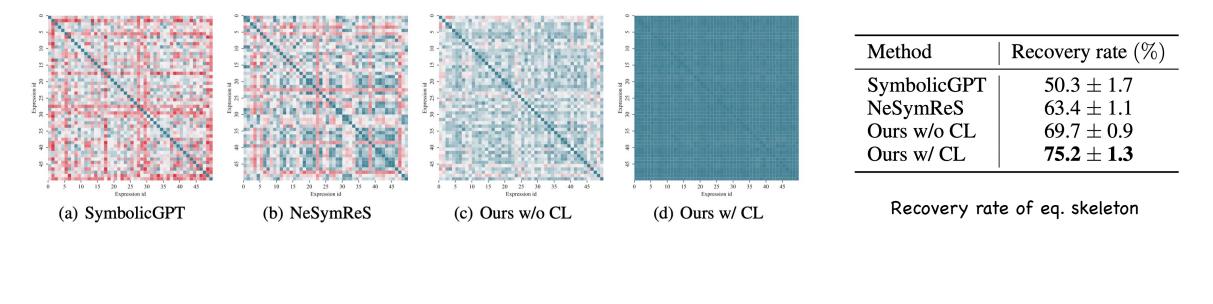


Advantages :

Use a pure residual MLP feature extractor for extracting rich features of data targeting SR tasks, which aids the expression generator in producing more correct expression skeletons

Train with a joint supervised learning mechanism combining supervised contrastive learning (CL), which alleviates the ill-posed problem effectively

Performance



$$1.2 \sin(x_1) + 1.5 \cos(x_2) + 0.6 \rightarrow data1$$

$$2.2 \sin(x_1) + 1.2 \cos(x_2) + 0.1 \rightarrow data2$$

$$3.6 \sin(x_1) + 0.9 \cos(x_2) + 1.2 \rightarrow data3$$

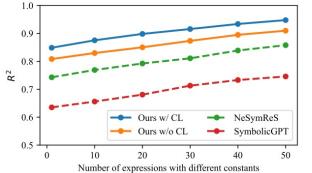
$$0 \text{ Our Model} \rightarrow asin(x_1) + b \cos(x_2) + c \rightarrow BFGS$$

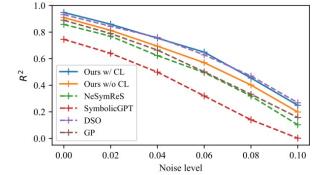
$$Pred. \text{ correct skeleton } \bigcirc$$

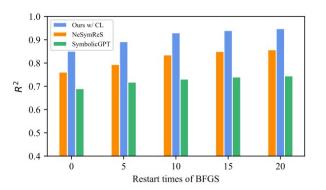
Eq. with same skeleton

Performance

	Ours	SymbolicGPT	NeSymReS	DSO	GP
Benchmark	$R^2\uparrow$	$R^2\uparrow$	$R^2\uparrow$	$R^2\uparrow$	$R^2\uparrow$
Nguyen	0.99999	0.64394	0.97538	0.99489	0.89019
Constant	0.99998	0.69433	0.84935	0.99927	0.90842
Keijzer	0.98320	0.59457	0.97500	0.96928	0.90082
R	0.99999	0.71093	0.99993	0.97298	0.83198
AI-Feynman	0.99999	0.64682	0.99999	0.99999	0.92242
SSDNC	0.94782	0.74585	0.85792	0.93198	0.88913
Overall avg.	0.98850	0.67274	0.94292	0.97806	0.89049







Thank you !

TRACE STREET, TRACES

Statistics of the local division of the loca