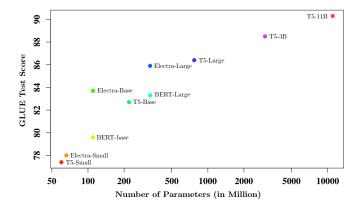
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained Transformers

Chen Liang*, Haoming Jiang*, Zheng Li*, Xianfeng Tang*, Bin Yin*, Tuo Zhao*

*Georgia Institute of Technology, *Amazon

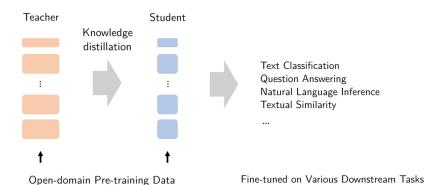
Apr. 1 2023

Growing Sizes of Language Models

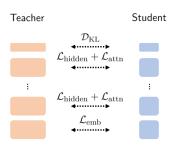


This poses great challenges for model deployment on devices with latency requirements and memory constraints.

Task-Agnostic Distillation



Layerwise Distillation

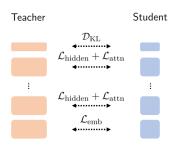


Objective:
$$\min_{\theta_s} \mathcal{L}_{\mathrm{MLM}}(\theta_s)$$

 $+\alpha_1 \mathcal{D}_{\mathrm{KL}}(\theta_s, \theta_t)$
 $+\alpha_2 \mathcal{L}_{\mathrm{hidden}}(\theta_s, \theta_t) + \alpha_3 \mathcal{L}_{\mathrm{attn}}(\theta_s, \theta_t) + \alpha_4 \mathcal{L}_{\mathrm{emd}}(\theta_s, \theta_t).$

where θ_s : student model; θ_t : teacher model.

Layerwise Distillation



$$\begin{split} \mathcal{L}_{\text{hidden}}(\theta_s, \theta_t) &= \sum_{k \in K} \texttt{MSE}(H_s^k, H_t^k W_{\text{hidden}}^k). \\ \mathcal{L}_{\text{attn}}(\theta_s, \theta_t) &= \sum_{k \in K} \texttt{MSE}(A_s^k, A_t^k). \\ \mathcal{L}_{\text{emb}}(\theta_s, \theta_t) &= \texttt{MSE}(E_s, E_t W_{\text{emb}}). \end{split}$$

Large Teacher-Student Knowledge Gap

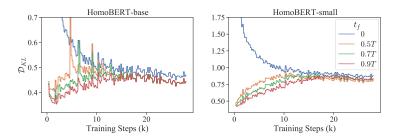
- There are large discrepancies between the student's and the teacher's layerwise representations.
- The student struggles to mimic the layerwise representations of the teacher.
- The student training favors reducing such large discrepancies over the training loss and underfits the training data.

HomoDistil: Maintain a Small Knowledge Gap

Initialize the student from the teacher and iteratively prune the student's neurons until the target width is reached.



HomoDistil: Maintain a Small Knowledge Gap



 t_f : The number of iterations to achieve the target width.

Experiment Settings

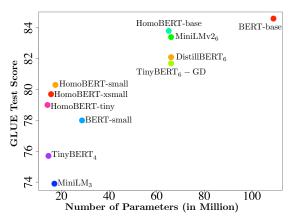
Student Architectures:

	Params (million)				
Model	Embedding	Backbone	Total	$d^{ m hidn}$	$d^{ m ffn}$
BERT-base (Teacher)	23.4	85.5	109	768	3072
HomoBERT-base	17.6	47.8	65	576	2304
HomoBERT-small	7.8	9.4	17.3	256	1024
HomoBERT-xsmall	7.3	8.3	15.6	240	960
HomoBERT-tiny	7.2	6.8	14.5	224	896

Distillation Dataset: Wikipedia + Bookcorpus.

Evaluation Dataset: GLUE benchmark.

Compare with Task-Agnostic Methods



DistilBERT (Sanh et al. 2019), TinyBERT (Jiao et al. 2020), MiniLMv2 (Wang et al., 2020).