

Order Matters: Agent-by-agent Policy Optimization

 Xihuai Wang ^{1,2}
 Zheng Tian ³
 Ziyu Wan ^{1,2}
 Ying Wen ¹
 Jun Wang ^{2,4}
 Weinan Zhang ¹

 ¹ Shanghai Jiao Tong University
 ² Digital Brain Lab
 ³ ShanghaiTech University
 ⁴ University College London

Rollout Scheme and Policy Update Scheme

- Several works that adopt trust region learning in multi-agent reinforcement learning (MARL) have been proposed.
- Most algorithms update the agents simultaneously, that is, all agents perform policy improvement at the same time and cannot observe the change of other agents.
- The simultaneous update scheme brings about the non-stationarity problem, i.e., the environment dynamic changes from one agent's perspective as other agents also change their policies.

Rollout Scheme and Policy Update Scheme

- Algorithms that sequentially execute agent-by agent updates allow agents to perceive changes made by preceding agents, presenting another perspective for analyzing inter-agent interaction.
- Alleviate the problems brought by simultaneous update scheme.
- Algorithms in sequential policy update scheme can be further categorized by whether a rollout is sampled after an agent's policy is updated.

Sequential Policy Update Scheme

• We formulate the update process in sequential policy update scheme as:

$$\pi = \hat{\pi}^0 \xrightarrow[\text{Update } \pi^1]{} \hat{\pi}^1 \xrightarrow[]{} \hat{\pi}^1 \xrightarrow[]{} \hat{\pi}^{n-1} \xrightarrow[]{} \frac{\max_{\pi^n} \mathcal{L}_{\hat{\pi}^{n-1}}(\hat{\pi}^n)}{\text{Update } \pi^n} \hat{\pi}^n = \bar{\pi}.$$

Naive Sequential Policy Updating with Single Rollout Fails

• An intuitive surrogate objective of agent *i* can be designed directly following the construction of surrogate objective in TRPO:

$$\mathcal{L}^{I}_{\hat{\boldsymbol{\pi}}^{i-1}}(\hat{\boldsymbol{\pi}}^{i}) = \mathcal{J}(\hat{\boldsymbol{\pi}}^{i-1}) + \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}}, \hat{\boldsymbol{\pi}}^{i})} [A^{\boldsymbol{\pi}}(s,\boldsymbol{a})]$$

Proposition 1 For agent *i*, let $\epsilon = \max_{s,a} |A^{\pi}(s, a)|$, $\alpha^j = D_{TV}^{\max}(\pi^j || \bar{\pi}^j) \forall j \in (e^i \cup \{i\})$, where $D_{TV}(p || q)$ is the total variation distance between distributions *p* and *q* and we define $D_{TV}^{\max}(\pi || \bar{\pi}) = \max_s D_{TV}(\pi(\cdot |s) || \bar{\pi}(\cdot |s))$, then we have:

$$\left|\mathcal{J}(\hat{\pi}^{i}) - \mathcal{L}_{\hat{\pi}^{i-1}}^{I}(\hat{\pi}^{i})\right| \leq 2\epsilon\alpha^{i} \left(\frac{3}{1-\gamma} - \frac{2}{1-\gamma(1-\sum_{j\in(e^{i}\cup\{i\})}\alpha^{j})}\right) + \underbrace{\frac{2\epsilon\sum_{j\in e^{i}}\alpha^{j}}{1-\gamma}}_{1-\gamma} = \beta_{i}^{I}$$

The uncontrollable term results in that the performance of the future joint policy $\hat{\pi}^i$ may not be improved even if α^i is well constrained.

Preceding-agent Off-policy Correction

- The uncontrollable term is caused by one ignoring how the updating of its preceding agents' policies influences its advantage function. We investigate reducing the uncontrollable term in policy evaluation.
- Preceding-agent Off-policy Correction (PreOPC):

$$A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}}(s_t, \boldsymbol{a}_t) = \delta_t + \sum_{k \ge 1} \gamma^k \big(\prod_{j=1}^k \lambda \min\big(1.0, \frac{\hat{\boldsymbol{\pi}}^{i-1}(\boldsymbol{a}_{t+j}|s_{t+j})}{\boldsymbol{\pi}(\boldsymbol{a}_{t+j}|s_{t+j})}\big)\big)\delta_{t+k}$$

$$\delta_t = r(s_t, \boldsymbol{a}_t) + \gamma V(s_{t+1}) - V(s_t)$$

• We prove that $A^{\pi,\widehat{\pi}^{i-1}}$ approximates $A^{\widehat{\pi}^{i-1}}$ as the agent *i* update its value function.

Tighter Monotonic Improvement Bound

• With PreOPC, the surrogate objective of agent *i* becomes:

$$\mathcal{L}_{\hat{\boldsymbol{\pi}}^{i-1}}(\hat{\boldsymbol{\pi}}^{i}) = \mathcal{J}(\hat{\boldsymbol{\pi}}^{i-1}) + \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}}, \hat{\boldsymbol{\pi}}^{i})} [A^{\boldsymbol{\pi}, \hat{\boldsymbol{\pi}}^{i-1}}(s, \boldsymbol{a})]$$

Theorem 1 (Single Agent Monotonic Bound) For agent *i*, let $\epsilon^i = \max_{s,a} |A^{\hat{\pi}^{i-1}}(s,a)|, \xi^i = \max_{s,a} |A^{\pi,\hat{\pi}^{i-1}}(s,a) - A^{\hat{\pi}^{i-1}}(s,a)|, \alpha^j = D_{TV}^{\max}(\pi^j || \bar{\pi}^j) \quad \forall j \in (e^i \cup \{i\}), \text{ then we have:}$

$$\begin{aligned} \mathcal{J}(\hat{\pi}^{i}) - \mathcal{L}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i}) \Big| &\leq 4\epsilon^{i} \alpha^{i} \Big(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j \in (e^{i} \cup \{i\})} \alpha^{j})} \Big) + \frac{\xi^{i}}{1-\gamma} \\ &\leq \frac{4\gamma\epsilon^{i}}{(1-\gamma)^{2}} \Big(\alpha^{i} \sum_{j \in (e^{i} \cup \{i\})} \alpha^{j} \Big) + \frac{\xi^{i}}{1-\gamma} \,. \end{aligned}$$

Tighter Monotonic Improvement Bound

Table 1: Comparisons of trust region MARL algorithms. The proofs of the monotonic bounds can be found in Appx. A. Note that we also provide the monotonic bound of RPISA-PPO, which implements RPISA with PPO as the base algorithm. We separate RPISA-PPO from other methods as it has low sample efficiency and thus does not constitute a fair comparison.

Algorithm	Rollout	Update	Sample Efficiency	Monotonic Bound
RPISA-PPO	Multiple	Sequential	Low	$\frac{4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\alpha^{i})}\right)}{\text{Single Agent: } 4\epsilon \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\alpha^{i})}\right)}$
MAPPO	Single	Simultaneous	High	$4\epsilon \sum_{i=1}^{n} \frac{\alpha^{i}}{1-\gamma}$
CoPPO	Single	Simultaneous	High	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{i=1}^{n} \alpha^{j})} \right)$
НАРРО	Single	Sequential	High	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{n} \alpha^{j})} \right)$ Single Agent: No Guarantee
A2PO (ours)	Single	Sequential	High	Single Agent: No Outlandee $4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j \in (e^{i} \cup \{i\})} \alpha^{j})}\right) + \frac{\sum_{i=1}^{n} \xi^{i}}{1-\gamma}$ Single Agent: $4\epsilon^{i} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j \in (e^{i} \cup \{i\})} \alpha^{j})}\right) + \frac{\xi^{i}}{1-\gamma}$

Considering that ∀ i, ξⁱ converges to 0, we get tighter monotonic improvement bound compared to previous trust region methods in multiagent scenarios. A tighter bound improves expected performance by optimizing the surrogate objective more effectively.

Agent-by-agent Policy Optimization

• The practical objective of updating agent *i* becomes:

$$\tilde{\mathcal{L}}_{\hat{\boldsymbol{\pi}}^{i-1}}(\hat{\boldsymbol{\pi}}^{i}) = \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\min\left(l(s,\boldsymbol{a})A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}}, \operatorname{clip}\left(l(s,\boldsymbol{a}), 1\pm\epsilon^{i} \right)A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}} \right) \right]$$

where $l(s,\boldsymbol{a}) = \frac{\bar{\pi}^{i}(a^{i}|s)}{\pi^{i}(a^{i}|s)}g(s,\boldsymbol{a})$, and $g(s,\boldsymbol{a}) = \operatorname{clip}\left(\frac{\prod_{j\in e^{i}}\bar{\pi}^{j}(a^{j}|s)}}{\prod_{i\in e^{i}}\pi^{j}(a^{j}|s)}, 1\pm\frac{\epsilon^{i}}{2}\right)$

Algorithm 1: Agent-by-agent Policy Optimization (A2PO)

1 Initialize the joint policy $\pi_0 = \{\pi_0^1, \ldots, \pi_0^n\}$, and the global value function V. **2** for *iteration* m = 1, 2, ... do Collect data using $\pi_{m-1} = \{\pi_{m-1}^1, \dots, \pi_{m-1}^n\}.$ 3 for Order $k = 1, \ldots, n$ do 4 Select an agent according to the selection rule as $i = \mathcal{R}(k)$. 5 Policy $\pi_m^i = \pi_{m-1}^i$, preceding agents $e^i = \{\mathcal{R}(1), \ldots, \mathcal{R}(k-1)\}$. 6 Joint policy $\hat{\pi}^i = \{\pi_m^i, \pi_m^{j \in e^k}, \pi_{m-1}^{j \in \mathcal{N} - e^k}\}.$ 7 Compute the advantage approximation as $A^{\pi, \hat{\pi}^{i-1}}(s, a)$ via Eq. (2). 8 Compute the value target $v(s_t) = A^{\pi, \hat{\pi}^{i-1}}(s, a) + V(s)$. 9 for P epochs do 10 $\pi_m^i = \operatorname{arg\,max}_{\pi_m^i} \tilde{\mathcal{L}}_{\hat{\pi}^{i-1}}(\hat{\pi}^i)$ as in Eq. (6). 11 $V = \arg\min_{V} \mathbb{E}_{s \sim d^{\pi}} \|v(s) - V(s)\|^{2}.$ 12

Agent-by-agent Policy Optimization

- Semi-greedy Agent Selection Rule
 - Select the agent to update in order *k* by

 $\begin{cases} \mathcal{R}(k) = \arg\max_{i \in (\mathcal{N}-e)} \mathbb{E}_{s,a^{i}}[|A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{\mathcal{R}(k-1)}}|], & k2 = 0\\ \mathcal{R}(k) \sim \mathcal{U}(\mathcal{N}-e), & k2 = 1 \end{cases}$

where $e = \{\mathcal{R}(1), \ldots, \mathcal{R}(k-1)\}$

- Adaptive Clipping Parameter
 - Adjust the clipping parameters according to the updating order:

$$\mathcal{C}(\epsilon, k) = \epsilon \cdot c_{\epsilon} + \epsilon \cdot (1 - c_{\epsilon}) \cdot k/n$$

 Agent 2
 Agent 3
 Agent 1
 Agent 2
 Agent 3
 Agent 1

 $\cdot \theta_{old}^2 \uparrow a_3$ $\cdot \theta_{old}^3 \uparrow a_3$ $\cdot \theta_{old}^1 \uparrow a_3$ $\cdot \theta_{old}^2 \uparrow a_3$ $\cdot \theta_{old}^3 \uparrow a_3$ $\cdot \theta_{old}^1 \uparrow a_3$
 v_1 q_3 v_1 q_3 v_1 q_3 v_1 q_4

Algorithm 1: Agent-by-agent Policy Optimization (A2PO)

1 Initialize the joint policy $\pi_0 = \{\pi_0^1, \dots, \pi_0^n\}$, and the global value function V. **2** for *iteration* m = 1, 2, ... do Collect data using $\pi_{m-1} = \{\pi_{m-1}^1, ..., \pi_{m-1}^n\}.$ 3 for Order $k = 1, \ldots, n$ do 4 Select an agent according to the selection rule as $i = \mathcal{R}(k)$. 5 Policy $\pi_m^i = \pi_{m-1}^i$, preceding agents $e^i = \{\mathcal{R}(1), \dots, \mathcal{R}(k-1)\}$. Joint policy $\hat{\pi}^{i} = \{\pi_{m}^{i}, \pi_{m}^{j \in e^{k}}, \pi_{m-1}^{j \in \mathcal{N} - e^{k}}\}.$ Compute the advantage approximation as $A^{\pi, \hat{\pi}^{i-1}}(s, a)$ via Eq. (2). 8 Compute the value target $v(s_t) = A^{\pi, \hat{\pi}^{i-1}}(s, a) + V(s)$. 9 for P epochs do 10 $\pi_m^i = \arg \max_{\pi_m^i} \tilde{\mathcal{L}}_{\hat{\pi}^{i-1}}(\hat{\pi}^i) \text{ as in Eq. (6)}.$ 11 $V = \arg\min_{V} \mathbb{E}_{s \sim d^{\pi}} \|v(s) - V(s)\|^{2}.$ 12

- StarCraftII Multi-agent Challenge (SMAC)
- Multi-agent MuJoCo (MA-MuJoCo)
- Google Research Football Full-game Scenarios
- Multi-agent Particle Environment
- Ablation Study
- Training Duration

StarCraftII Multi-agent Challenge (SMAC)

Table 5: Median win rates and standard deviations on SMAC tasks. 'w/ PS' means the algorithm is implemented as parameter sharing

Map	Difficulty	MAPPO w/ PS	CoPPO w/ PS	HAPPO w/ PS	A2PO w/ PS	Qmix w/ PS
MMM	Easy	96.9(0.988)	96.9(1.25)	95.3(2.48)	100(1.07)	95.3(2.5)
3s_vs_5z	Hard	100(1.17)	100(2.08)	100(0.659)	100(0.534)	98.4(2.4)
2c_vs_64zg	Hard	98.4(1.74)	96.9(0.521)	96.9(0.521)	96.9(0.659)	92.2(4.0)
3s5z	Hard	84.4(4.39)	92.2(2.35)	92.2(1.74)	98.4(1.04)	88.3(2.9)
5m_vs_6m	Hard	84.4(2.77)	84.4(2.12)	87.5(2.51)	90.6(3.06)	75.8(3.7)
8m_vs_9m	Hard	84.4(2.39)	84.4(2.04)	96.9(3.78)	100(1.04)	92.2(2.0)
10m_vs_11m	Hard	93.8(18.7)	96.9(2.6)	98.4(2.99)	100(0.521)	95.3(1.0)
6h_vs_8z	Super Hard	87.5(1.53)	90.6(0.765)	87.5(1.49)	90.6(1.32)	9.4(2.0)
3s5z_vs_3s6z	Super Hard	82.8(19.2)	84.4(2.9)	37.5(13.2)	93.8(19.8)	82.8(5.3)
MMM2	Super Hard	90.6(8.89)	90.6(6.93)	51.6(9.01)	98.4(1.25)	87.5(2.6)
27m_vs_30m	Super Hard	93.8(3.75)	93.8(2.2)	90.6(4.77)	100(1.55)	39.1(9.8)
corridor	Super Hard	96.9(0)	100(0.659)	96.9(0.96)	100(0)	84.4(2.5)
overall	/	91.1(5.46)	92.6(2.2)	85.9(3.68)	97.4(2.65)	78.4(3.6)

Multi-agent MuJoCo (MA-MuJoCo)

Figure 3: Experiments in MA-MuJoCo. Left: Normalized scores on all the 14 tasks. Right: Comparisons of averaged return on selected tasks. The number of robot joints increases from left to right.

Google Research Football Full-game Scenarios

Figure 4: Averaged win rate on the Google Research Football full-game scenarios. Table 3: Learned behaviors on the Google Research Football 5-vs-5 scenario. Bigger values are better except fot the 'Lost' metric.

Metric	MAPPO	CoPPO	HAPPO	A2PO
Assist	0.04(0.02)	0.19(0.08)	0.07(0.05)	0.56(0.20)
Goal	1.95(1.17)	4.42(2.08)	2.68(0.86)	9.01(0.95)
Lost	0.49(0.11)	0.74(0.33)	1.04(0.12)	0.78(0.15)
Pass	1.52(0.13)	3.44(1.04)	4.03(1.97)	6.42(2.23)
Pass Rate	19.3(10.0)	35.0(10.3)	48.9(25.7)	67.1 (11.7)

Multi-agent Particle Environment

Figure 10: Comparisons of averaged return on the Multi-agent Particle Environment Navigation task. Left: The fully cooperative setting. **Right**: The general-sum setting.

Ablation Study

Training Duration

(a) Comparison on Humanoid 9/8 over both environment steps and training time

(b) Comparison on GRF 11-vs-11 scenario

10.0

Table 6: The comparison of training duration. The format of the first line in a cell is: Training time(Sampling time+Updating Time). The second line of a cell represents the time normalized.

Task	MAPPO	СоРРО	HAPPO	A2PO
3s5z	3h29m(3h3m+0h26m)	3h33m(3h6m+0h27m)	3h49m(3h7m+0h42m)	4h32m(3h41m+0h51m)
	1.00(0.87 + 0.13)	1.02(0.89 + 0.13)	1.10(0.89 + 0.20)	1.30(1.06 + 0.25)
27m vs 30m	13h23m(8h31m + 4h52m)	13h19m(8h24m + 4h55m)	16h2m(8h20m + 7h42m)	15h53m(8h7m + 7h46m)
	1.00(0.64 + 0.36)	1.00(0.63 + 0.37)	1.20(0.62 + 0.58)	1.19(0.61 + 0.58)
Humanoid 9 8	$ \begin{vmatrix} 2h0m(1h45m + 0h15m) \\ 1.00(0.87 + 0.13) \end{vmatrix} $	1h58m(1h43m + 0h15m) 0.99(0.86 + 0.13)	2h15m(1h45m + 0h30m) 1.12(0.87 + 0.25)	2h31m(2h0m + 0h31m) 1.26(1.00 + 0.26)
Ant 4x2	6h42m(6h16m + 0h26m)	6h45m(6h19m + 0h26m)	7h29m(6h5m + 1h24m)	7h2m(5h34m + 1h28m)
	1.00(0.93 + 0.07)	1.01(0.94 + 0.07)	1.12(0.91 + 0.21)	1.05(0.83 + 0.22)
Humanoid 17x1	$\begin{vmatrix} 12h9m(10h6m + 2h3m) \\ 1.00(0.83 + 0.17) \end{vmatrix}$	17h7m(15h5m + 2h2m) 1.41(1.24 + 0.17)	16h55m(11h2m + 5h53m) 1.39(0.91 + 0.48)	$\begin{vmatrix} 19h25m(11h59m + 7h26m) \\ 1.60(0.99 + 0.61) \end{vmatrix}$
Football 5vs5	34h46m(32h47m + 1h59m)	32h46m(30h49m + 1h57m)	39h26m(31h54m + 7h32m)	37h26m(30h2m + 7h24m)
	1.00(0.94 + 0.06)	0.94(0.89 + 0.06)	1.13(0.92 + 0.22)	1.08(0.86 + 0.21)