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Our contributions
1 Introduction

• Aim of this work: learn representations that are invariant to biases in the
data

• We study deep representation learning with a metric approach, proposing a
novel contrastive loss named ϵ-SupInfoNCE

• We formalize how biases can affect the representations, and we propose
FairKL, a regularization technique for learning bias-invariant representations.
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Contrastive Learning - Notation
2 A Metric Approach for Contrastive Learning

• Let x ∈ X be a sample (anchor)
• Let x+

i be a positive sample (i.e. same class)
• Let x−

j be a negative sample (i..e different
class) Figure: From Schroff et al. [5]

Aim of contrastive learning methods: look for a parametric mapping function fθ : X → Sd−1 that:
1. Maps similar samples close together in the representation space
2. Dissimilar samples further away
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Contrastive Learning - Notation
2 A Metric Approach for Contrastive Learning

• d : Sd−1 × Sd−1 → R is a distance function, eg. Euclidean
• d+

i and d−
j shorthand notations for d(f(x), f(x+

i )) and d(f(x), f(x−
j ))

• s denotes the [cosine] similarity, with s+
i and s−

j shorthand for s(f(x), f(x+
i ))

and s(f(x), f(x−
j ))

Note
Given that ||f(x)||2 = 1, if we choose d(x, y) = 1

2 ||x − y||22, then we have s(x, y) = 1 − d(x, y)



ϵ-margin
2 A Metric Approach for Contrastive Learning

Using an ϵ-margin metric learning point of view, probably
the simplest formulation is looking for a mapping function
f that satisfies the following condition:

s(f(x), f(x−
j ))︸ ︷︷ ︸

s−
j

− s(f(x), f(x+
i )︸ ︷︷ ︸

s+
i

≤ −ϵ ∀i, j

Here, ϵ ≥ 0 is the minimal margin between a positive
sample and a negative sample (purple area)



Derivation of ϵ-SupInfoNCE
2 A Metric Approach for Contrastive Learning

• The condition s−
j − s+

i ≤ −ϵ ∀i, j is equivalent to max{s−
j − s+

i } ≤ −ϵ;

• In other words, we want to maximize the minimal margin between a
positive and a negative sample;

• However, max is not differentiable. In order to obtain a derivable loss
function, we employ LogSumExp (LSE), which is a smooth approximation of
the max operator:

arg min
f

∑
i

max(−ϵ, {s−
j −s+

i }) ≈ arg min
f

∑
i

log

exp(−ϵ) +
∑

j

exp(s−
j − s+

i )
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Derivation of ϵ-SupInfoNCE
2 A Metric Approach for Contrastive Learning

Using the LSE approximation, we obtain the following loss function, which we call
ϵ-SupInfoNCE:

Lϵ−SupInfoNCE = −
∑

i

log
(

exp(s+
i )

exp(s+
i − ϵ)∑j exp(s−

j )

)

Alternative derivations
Please note that other derivations are possibile; some of them are shown in the full paper.



Results
2 A Metric Approach for Contrastive Learning

Table: Accuracy on vision datasets. SimCLR and Max-Margin results from [2]. Results
denoted with * are (re)implemented with mixed precision due to memory constraints.

Dataset Network SimCLR Max-Margin SimCLR* CE* SupCon* ϵ-SupInfoNCE*
CIFAR-10 ResNet-50 93.6 92.4 91.74±0.05 94.73±0.18 95.64±0.02 96.14±0.01

CIFAR-100 ResNet-50 70.7 70.5 68.94±0.12 73.43±0.08 75.41±0.19 76.04±0.01
ImageNet-100 ResNet-50 - - 66.14±0.08 82.1±0.59 81.99±0.08 83.3±0.06
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The Issue of Biases
3 Debiasing with FairKL

• Satisfying the ϵ-condition can generally guarantee good downstream
performance. However, it does not take into account the presence of biases
(e.g. selection biases).

• We employ the notion of bias-aligned and bias-conflicting samples as in [4]:

1. bias-aligned: shares the same bias attribute of the anchor. We denote it as x+,b

2. bias-conflicting: has a different bias attribute. We denote it as x+,b′

anchor bias-aligned bias-conflicting
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Biases and Failure of ϵ-SupInfoNCE
3 Debiasing with FairKL

• Given an anchor x, if the bias is “strong” and easy-to-learn, a positive
bias-aligned sample x+,b will probably be closer to the anchor x in the
representation space than a positive bias-conflicting sample;

• Thus, we say that there is a bias if we can identify an ordering on the
learned representations, e.g.:

s−
j + ϵ ≤ s+,b′

k < s+,b
i ∀i, k, j

Note
This represents the worst-case scenario, where the ordering is total (i.e., ∀i, k, j). Of course, there can also
be cases in which the bias is not as strong, and the ordering may be partial. Furthermore, the same
reasoning can be applied to negative samples (omitted for brevity).
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3 Debiasing with FairKL

• Assuming that the similarities follow a normal distribution, we denote as
B+,b ∼ N (µ+,b, σ2

+,b) and B+,b′ ∼ N (µ+,b′ , σ2
+,b′) the distributions of

similarities of the bias-aligned and bias-conflicting samples respectively;

• We minimize the Kullback-Leibler divergence of the two distributions with the
FairKL regularization term:

RF airKL = DKL(B+,b||B+,b′) = 1
2

[
σ2

+,b + (µ+,b − µ+,b′)2

σ2
+,b′

− log
σ2

+,b

σ2
+,b′

− 1
]
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FairKL Visualized
3 Debiasing with FairKL

aligned

conflicting



Final Objective
3 Debiasing with FairKL

The final obective function J we minimize becomes:

J = αLϵ−SupInfoNCE + λRF airKL

where α and λ are positive hyperparameters.



Results
3 Debiasing with FairKL

Table: Accuracy (%) on Biased-MNIST. Additional experiments available in the paper.

Correlation (%)
Method 99.9 99.7 99.5 99
CE [1] 11.8±0.7 62.5±2.9 79.5±0.1 90.8±0.3
LNL [3] 18.2±1.2 57.2±2.2 72.5±0.9 86.0±0.2
EnD [6] 59.5±2.3 82.70±0.3 94.0±0.6 94.8±0.3
BC+BB* [1] 30.26±11.08 82.83±4.17 88.20±2.27 95.04±0.86
BB [1] 76.8±1.6 91.2±0.2 93.9±0.1 96.3±0.2
BC+CE* [1] 15.06±2.22 90.48±5.26 95.95±0.11 97.67±0.09

FairKL 90.51±1.55 96.19±0.23 97.00±0.06 97.86±0.02
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Conclusions
4 Conclusions

1. We test our method on standard debiasing benchmarks, achieving
state-of-the-art results

2. Our metric approach allows for a clear and interpretable way of describing the
behavior of different loss functions and regularizations

3. Furthermore, the usage of FairKL is not limited to ϵ-SupInfoNCE or
contrastive losses



Thanks
4 Conclusions

• Thank you for listening!

• The code is available on github at https://github.
com/EIDOSLAB/unbiased-contrastive-learning

• The full-text is available on OpenReview at
https://openreview.net/pdf?id=Ph5cJSfD2XN

https://github.com/EIDOSLAB/unbiased-contrastive-learning
https://github.com/EIDOSLAB/unbiased-contrastive-learning
https://openreview.net/pdf?id=Ph5cJSfD2XN
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