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Instabilities in Deep Learning

Adversarial examples

‘Duck’ ‘Horse’ 0.07

+

‘How are you?’ 0.01 ‘Open the door’ 

+

Hallucinations Function approximation
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See also: B. Adcock and N. Dexter. The gap between theory and practice in function approximation with deep neural networks. SIAM Journal on Mathematics of Data Science, 3(2):624–655, 2021

Fig. 2: S. Bhadra, V. A. Kelkar, F. J. Brooks, and M. A. Anastasio. On hallucinations in tomographic image reconstruction. IEEE transactions on medical imaging, 40(11):3249–3260, 2021

Fig. 1: Y. Gong and C. Poellabauer. Protecting voice controlled systems using sound source identification based on acoustic cues. In 2018 27th International Conference on Computer Communication and Networks (ICCCN), pages 1–9. IEEE, 2018

Berner, Grohs, Voigtlaender Learning ReLU networks to high uniform accuracy is intractable 2 / 7



Instabilities in Deep Learning

Adversarial examples

‘Duck’ ‘Horse’ 0.07

+

‘How are you?’ 0.01 ‘Open the door’ 

+

Hallucinations

Function approximation

−0.3 0.0 0.3

−1

0

1

2

0.110 0.112 0.114 0.116

0.7

0.8

0.9

1.0

0.068 0.072 0.076

0.72

0.80

0.88

0.96
model

target

samples

−0.3 0.0 0.3

−1

0

1

2

0.110 0.112 0.114 0.116

0.7

0.8

0.9

1.0

0.068 0.072 0.076

0.72

0.80

0.88

0.96
model

target

samples

−0.3 0.0 0.3

−1

0

1

2

0.110 0.112 0.114 0.116

0.7

0.8

0.9

1.0

0.068 0.072 0.076

0.72

0.80

0.88

0.96
model

target

samples

−0.3 0.0 0.3

−1

0

1

2

0.110 0.112 0.114 0.116

0.7

0.8

0.9

1.0

0.068 0.072 0.076

0.72

0.80

0.88

0.96
model

target

samples

See also: B. Adcock and N. Dexter. The gap between theory and practice in function approximation with deep neural networks. SIAM Journal on Mathematics of Data Science, 3(2):624–655, 2021

Fig. 2: S. Bhadra, V. A. Kelkar, F. J. Brooks, and M. A. Anastasio. On hallucinations in tomographic image reconstruction. IEEE transactions on medical imaging, 40(11):3249–3260, 2021

Fig. 1: Y. Gong and C. Poellabauer. Protecting voice controlled systems using sound source identification based on acoustic cues. In 2018 27th International Conference on Computer Communication and Networks (ICCCN), pages 1–9. IEEE, 2018

Berner, Grohs, Voigtlaender Learning ReLU networks to high uniform accuracy is intractable 2 / 7



Instabilities in Deep Learning

Adversarial examples

‘Duck’ ‘Horse’ 0.07

+

‘How are you?’ 0.01 ‘Open the door’ 

+

Hallucinations Function approximation

−0.3 0.0 0.3

−1

0

1

2

0.110 0.112 0.114 0.116

0.7

0.8

0.9

1.0

0.068 0.072 0.076

0.72

0.80

0.88

0.96
model

target

samples

−0.3 0.0 0.3

−1

0

1

2

0.110 0.112 0.114 0.116

0.7

0.8

0.9

1.0

0.068 0.072 0.076

0.72

0.80

0.88

0.96
model

target

samples

−0.3 0.0 0.3

−1

0

1

2

0.110 0.112 0.114 0.116

0.7

0.8

0.9

1.0

0.068 0.072 0.076

0.72

0.80

0.88

0.96
model

target

samples

−0.3 0.0 0.3

−1

0

1

2

0.110 0.112 0.114 0.116

0.7

0.8

0.9

1.0

0.068 0.072 0.076

0.72

0.80

0.88

0.96
model

target

samples

See also: B. Adcock and N. Dexter. The gap between theory and practice in function approximation with deep neural networks. SIAM Journal on Mathematics of Data Science, 3(2):624–655, 2021

Fig. 2: S. Bhadra, V. A. Kelkar, F. J. Brooks, and M. A. Anastasio. On hallucinations in tomographic image reconstruction. IEEE transactions on medical imaging, 40(11):3249–3260, 2021

Fig. 1: Y. Gong and C. Poellabauer. Protecting voice controlled systems using sound source identification based on acoustic cues. In 2018 27th International Conference on Computer Communication and Networks (ICCCN), pages 1–9. IEEE, 2018

Berner, Grohs, Voigtlaender Learning ReLU networks to high uniform accuracy is intractable 2 / 7



Despite Theoretical Guarantees

Approximation

Bounds on size of the hypothesis space
N such that for functions f from a given
function class there is u∗ ∈ N with

‖f − u∗‖L∞ ≤ ε.

� Neural networks can optimally approxi-
mate many function classes!

Generalization

Bounds on number of samples (xi , yi )
m
i=1

such that the empirical risk minimizer

û ∈ arg min
u∈N

m∑
i=1

(u(xi )− yi )
2.

satisfies ‖u∗ − û ‖L2 ≤ ε.

� Can avoid the curse of dimensionality!

� Our results: Learning ReLU networks from samples with uniform accuracy
(in the ‖ · ‖L∞-norm) is often intractable!

See, e.g.: J. Berner, P. Grohs, and A. Jentzen. Analysis of the generalization error [. . . ]. SIAM Journal on Mathematics of Data Science, 2(3):631–657, 2020

See, e.g.: M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge University Press, 1999

See, e.g.: D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei. Deep neural network approximation theory. IEEE Transactions on Information Theory, 67(5):2581–2623, 2021
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Simplified Version of Our Lower Bound

We consider all possible algorithms including all variants of gradient descent, active
learning approaches, randomized algorithms, and empirical risk minimization.

Lower Bound

Any algorithm learning all ReLU networks with d-dimensional input, depth L, width 3d , and
parameters bounded by c to uniform accuracy ε needs at least

m ≥ cdL(3d)d(L−2)

(
1

29ε

)d

samples.

� Exponential dependence on the dimension d and depth L.

o Different from other hypothesis classes (e.g., polynomials and certain kernel
spaces), we need significantly more samples than the number of parameters.
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Theory vs. Practice

Proof

Construction of localized spikes with reg-
ularized ReLU networks.

x1 − 1
M x1

x1 +
1
M

cL(3d)L−2

2M

Experiments

Similar spikes prevent high uniform accu-
racies in teacher-student settings.
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Further Results

÷ General lower bounds for all
Lp-norms and different parameter
regularizations.

÷ Empirical validation of our results in
teacher-student settings.

÷ Asymptotically matching upper
bounds.

÷ Connections to statistical query
algorithms and neural network
identification.

102 103 104 105

m

10−4

10−3

êr
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Thank you for your attention!

julius.berner@univie.ac.at philipp.grohs@univie.ac.at felix@voigtlaender.xyz
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