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Instabilities in Deep Learning
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Fig. 1: Y. Gong and C. Poellabauer. Protecting voice controlled systems using sound source identification based on acoustic cues. In 2018 27th International Conference on Computer Communication and Networks (ICCCN), pages 1-9. IEEE, 2018
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Despite Theoretical Guarantees
Approximation

Bounds on size of the hypothesis space
N such that for functions f from a given
function class there is u* € A/ with

If —u™||1~ <e.
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Despite Theoretical Guarantees

Approximation Generalization
Bounds on size of the hypothesis space Bounds on number of samples (x;, y;)7 ;
N such that for functions f from a given such that the empirical risk minimizer

function class there is u* € N with m
o~ . 2
u € arg min ulxi)—vyi).
IF = || < e. gmi ;( (%) — i)

s Neural networ.ks can optimally approxi- satisfies ||u* — 0|2 < e.
mate many function classes!
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satisfies ||u* — U2 <e.

s Can avoid the curse of dimensionality!

3/7



Despite Theoretical Guarantees
Approximation

Bounds on size of the hypothesis space
N such that for functions f from a given
function class there is u* € N with

If —u™||1~ <e.

s Neural networks can optimally approxi-
mate many function classes!

Generalization

Bounds on number of samples (x;, y;)7 ;
such that the empirical risk minimizer

m
gcargmin ) (u(x;) —y)>
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satisfies ||u* — U2 < e.

s Can avoid the curse of dimensionality!

i@ Our results: Learning ReLU networks from samples with uniform accuracy
(in the || - || Lo-norm) is often intractable!
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Simplified Version of Our Lower Bound

We consider all possible algorithms including all variants of gradient descent, active
learning approaches, randomized algorithms, and empirical risk minimization.
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We consider all possible algorithms including all variants of gradient descent, active
learning approaches, randomized algorithms, and empirical risk minimization.

Lower Bound

Any algorithm learning all ReLU networks with d-dimensional input, depth L, width 3d, and
parameters bounded by c¢ to uniform accuracy € needs at least

1 d
m > CdL(3d)d(Lf2) <296)

samples.

i@ Exponential dependence on the dimension d and depth L.

A Different from other hypothesis classes (e.g., polynomials and certain kernel
spaces), we need significantly more samples than the number of parameters.
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Theory vs. Practice

Proof

Construction of localized spikes with reg-
ularized ReLU networks.

L (3d)t—2
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Theory vs. Practice

Proof Experiments
Construction of localized spikes with reg- Similar spikes prevent high uniform accu-
ularized ReLU networks. racies in teacher-student settings.
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Further Results

«f General lower bounds for all
LP-norms and different parameter

regularizations.
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Further Results

«f General lower bounds for all
LP-norms and different parameter
regularizations.

«f Empirical validation of our results in
teacher-student settings.

«f Asymptotically matching upper
bounds.

of Connections to statistical query

algorithms and neural network
identification.
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Thank you for your attention!

julius.berner@univie.ac.at

philipp.grohs@univie.ac.at

felix@voigtlaender.xyz
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