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Annotation ambiguity

Real-world data naturally suffers from inherent label ambiguity.
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Partial Label Learning & A New Challenge
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® The ideal assumption behind PLL The long-tailed distribution®

® The collected data is approximately uniformly distributed regarding classes.
® However, Real-world natural sources usually follow the long-tailed law.

¢ A new challenge: long-tailed partial label learning (LT-PLL)

® The algorithmic robustness to both category imbalance and label ambiguity.
® Tail samples cannot be correctly recognized even in training.
® No available class prior.

ILearning to Model the Tail. NeurlPS 2017.
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Related Work - PLL

Partial label learning (PLL) and long-tailed learning (LT)
independently study partial aspects of LT-PLL.

Partial label learning (PLL)
e Key challenge

® | abel disambiguation: detecting the groundtruth from the candidate label set

® Existing work

* Average-based methods! Co M D on
® Graph-based methods?
® Self-training methods®

Korat ? 7

ILearning from partial labels. JMLR 2011.
2GM-PLL: graph matching based partial label learning. TKDE, 2021.
3Provably consistent partial-label learning. NeurlPS 2020.
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Related Work - LT

Partial label learning (PLL) and long-tailed learning (LT)
independently study partial aspects of LT-PLL.

Long-tailed learning (LT)
® Key challenge

® Rebalancing: learning a balanced model from imbalanced data

® Existing work '
® Re-sampling! 5 Train 3 Test
® Re-weighting? 5 —_ 5
® Transfer learning3
® |ogit adjustment* -
Cls s

!Decoupling representation and classifier for long-tailed recognition. ICLR 2020.
2Class-balanced loss based on effective number of samples. CVPR 2019.

3Feature transfer learning for face recognition with under-represented data. CVPR 2019.

4Long-tail learning via logit adjustment. ICLR 2021.
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Motivation
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Observation: The prediction imbalance of PLL baselines (blue curve) is not sig-
nificant at the early stage and gradually increases with the label disambiguation.
Constant rebalancing ( ) (LA: Z7 .(x) = 2¥(x) — log Perain(y)):

1. No available class prior Pt,in(y). 2. It does not consider the dynamics of label

disambiguation and leads to failure.
Dynamic rebalancing (red curve): A dynamic rebalancing method that considers
the label disambiguation process can be intuitively more effective.
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RECORDS: Rebalancing for Dynamic Bias
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Dynamic rebalancing adapted to model training is more friendly to weakly
supervised paradigms like PLL.
RECORDS can be easily plugged into the current PLL methods in an

end-to-end manner.
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RECORDS

® Dynamic rebalancing paradigm
IP)uni(_y|X; @) X P(Xb’; @) : ]P)train(y|e) / ]P)train(y|e)
X IEDtrain(y|X; @) / IP)train(y‘@)
o softmax(z”(x) — log Ptain(v|©)),

* NWGM approximation & momentum updates

NWGM
Pirain(y|©) = Ex.ep,,., softmax(z¥(x;)) =~  softmax(Ex.ep,., 2" (xi))

= softmax(g” (Ex,ep,,,, f (xi; 0); W)).

F < mF + (1 - m)Ex;GBatchf(xi; 9)
® Final implementation

z2 (x) = z¥(x) — log softmax(g” (F; W)).

uni
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Relation between Dynamic & Constant Rebalancing

Proposition
Let h= hg be the optimal classifier on the basis of the label disambiguation. If the small
ambiguity degree condition® satisfies, the Ly distance between Py.in(y) and Peain( y\é)

given h is bounded as L; (h) < m(dH(ln 2N +2InC) —Ind + In2) with
probability at least 1 — 6.
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(a) Lo distance during training (b) Estimated class distribution

ILearning from partial labels. JMLR 2011.

9/13



Experiments

Main results

Table 1: Top-1 accuracy on three benchmark datasets. Bold indicates the superior results.

| CIFAR-10-LT | CIFAR-100-LT |

Imbalance ratio p | 50 | 100 | 50 | 100 | PA\?(()??L
Ambiguity g | 03 0.5 07 | 03 0.5 07 | 003 0.05 007 | 0.03 0.05 0.07 |

CORR 76.12 56.45 41.56 66.38 50.09 38.11 42.29 38.03 36.59 | 3839 3409 31.05 24.43
+ Oracle-LA post-hoc | 80.70 58.49 43.44 72.96 54.64 41.66 46.94 40.76 39.07 4149  36.79 33.32 34.12
+ Oracle-LA 36.27 17.61 12.77 29.97 15.80 11.75 22.56 5.59 3.12 11.37 3.32 1.98 52,51
+RECORDS 82.57 80.28 67.24 77.66 72.90 57.46 48.06 45.56 42.51 4225 4059  38.65 56.46
vs. CORR +6.45 42383 42568 | +11.28 +22.81 +19.35 +5.77 +7.53 +5.92 +3.86 +6.40  +7.60 +32.03
PRODEN 73.12 54.45 41.37 63.55 47.37 38.06 39.23 35.45 33.90 3452 32,04 2940 22.39
+ Oracle-LA post-hoc | 77.41 57.14 4291 70.71 48.79 41.38 43.40 38.64 3582 | 3840 3520 31.92 31.53
+ Oracle-LA 27.18 16.97 11.52 19.51 14.11 11.17 12.37 4.09 2.64 6.79 2.73 1.98 48.33
+RECORDS 79.48 76.73 65.31 72.15 6522  52.26 44.56 41.31 39.26 | 39.13 3723 3526 52.65
vs. PRODEN +6.36  +2228 +23.94 | +8.60 +17.85 +14.2 +5.33 +5.86 +5.36 +4.61  +5.19  +5.86 +30.26
Lw 70.11 37.67 22.73 64.78 39.57 23.54 35.54 29.50 27.86 31.58  28.09 24.65 19.41
+ Oracle-LA post-hoc | 74.34 40.27 25.34 69.60 42.34 27.35 35.47 28.80 27.27 31.03 2696 2320 21.06
+ Oracle-LA 41.90 21.36 15.28 2575 20.35 14.24 30.37 14.43 4.79 30.30 5.08 2.70 51.53
+ RECORDS 76.02 57.39 40.28 71.18 57.23 41.24 36.56 31.67 29.39 33.00 2885 25.64 53.09
vs. LW +5.91 +19.72  +17.55 +6.40 +17.66  +17.70 +1.02 +2.17 +1.53 +142  +0.76 +0.99 +33.68
CAVL 56.73 40.27 18.52 5428 38.97 17.28 29.63 17.31 8.34 2829 2539 8.20 17.25
+ Oracle-LA post-hoc | 55.23 39.76 18.34 51.37 37.28 14.58 29.65 14.86 5.76 2834 2627 5.80 2227
+ Oracle-LA 22.16 14.97 11.50 18.29 14.23 10.67 17.31 4.36 2.83 7.24 2.55 2.03 50.78
+RECORDS 67.27 61.23 40.71 64.35 58.27 37.38 42.25 36.53 29.13 3693 3149 2498 53.07
vs. CAVL +10.54  +20.96  +22.19 | +10.07 +19.30  +20.1 +12.62  +19.22  +1427 | +8.64 +6.10 +16.78 +35.82
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Experiments

Table 2: Fine-grained analysis on CIFAR-100-LT with p = 100 and ¢ € {0.03,0.05,0.07}.

Fine-grained analysis

Many/Medium/Few corresponds to three partitions on the long-tailed data.

| q=003 | q=005 | q=007
Method | Many Medium Few Overall | Many Medium Few  Overall | Many Medium Few  Overall
CORR 68.43 37.40 4.50 38.39 67.51 29.60 0.33 34.09 68.86 19.80 0.07 31.05
+ Oracle-LA post-hoc | 70.37 41.89 7.33 41.49 70.46 33.40 147 36.79 69.77 24.86 0.67 33.32
+ Oracle-LA 11.03 12.34 10.63 11.37 0.34 4.46 547 3.32 0.00 0.71 577 1.98
+ RECORDS 66.37 42.54 1377  42.25 | 68.49 40.20 8.50 40.59 | 69.97 36.71 4.37 38.65
vs. CORR -2.06 +5.14 +9.27 +3.86 +0.98  +10.60 +8.17 +6.50 | +1.11 +16.91 +4.30  +7.60
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Experiments

Further analysis

Table 5: Comparison with other dynamic strategies on CIFAR-10-LT and CIFAR-100-LT.

| CIFAR-10-LT | CIFAR-100-LT

Imbalance ratio p | 50 100 | 50 100
Ambiguity ¢ | 03 0.5 07 | 03 0.5 07 | 003 005 007 | 003 005 0.07
CORR 76.12 56.45 41.56 | 66.38 50.09 38.11 | 42.29 38.03 36.59 | 38.39 34.09 31.05
+ Temp Oracle-LA 81.37 43.62 18.10 | 76.09 2588 16.11 | 47.44 43.46 29.75 | 41.78 39.19 33.69
+ Epoch RECORDS | 7543 70.27 59.50 | 69.38 63.12 47.85 | 46.54 43.07 38.28 | 41.58 37.14 34.38
+ RECORDS 82.57 80.28 67.24 | 77.66 7290 57.46 | 48.06 45.56 42.51 | 42.25 40.59 38.65
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Summary

¢ Challenge: We delve into the LT-PLL scenario, and identify its several challenges
that cannot be addressed and even lead to failure by the straightforward combination
of the current LT and PLL methods.

® Methodology: We propose a novel RECORDS for LT-PLL that conducts the
dynamic adjustment to rebalance the training without requiring any prior about the
class distribution.

® Theoretical Understanding: The theoretical and empirical analysis show that the
dynamic parametric class distribution is asymmetrically approaching to the oracle
class distribution but more friendly to label disambiguation.

e Lightweight: Our method is orthogonal to existing PLL methods and can be easily
plugged into the current PLL methods in an end-to-end manner.
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