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Word Embeddings
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Bias in Representation

Image Credit: Dev, et al., 2021, “OSCaR: Orthogonal Subspace Correction and Rectification of Biases in Word
Embeddings”
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Bias Amplification in ChatGPT

Source: https://textio.com/blog/chatgpt-writes-job-posts/99089591200

Source: https://www.fastcompany.com/90844066/chatgpt-write-performance-reviews-sexist-and-racist Source: https://mobile.twitter.com/dk_munro/status/1631761802500423680
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Debiasing Representations

Concept Subspaces Identification
Debiasing and Disentangling of Subspaces
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Concept Subspaces Identification: Two Means
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Debiasing and Disentanglement of Subspaces

Linear Projection, LP (Dev & Phillips, 2019)
Hard Debiasing, HD (Bolukbasi et al., 2016)
Iterative Null Space Projection, INLP (Ravfogel et al., 2020)
OSCaR (Dev et al., 2021)
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Iterative Subspace Rectification

In this work, we propose a new mechanism to augment a word
vector embedding representation that offers:

⋆ improved bias removal while retaining the key information
⋆ resulting in the interpretability of the representation.

We build on top of Orthogonal Subspace Correction and
Rectification (OSCaR)
We call our approach iterative subspace rectification (ISR),
but add some subtle but significant modifications
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Significant modifications to OSCaR

Centering in ISR
Rectification in ISR
Uncentering in ISR
Iteration in ISR
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Centering in ISR
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Rectification/Orthogonalization in ISR

Image Credit: Dev, et al., 2021, “OSCaR: Orthogonal Subspace Correction and Rectification of Biases in Word
Embeddings”
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Uncentering in ISR

After rectification, we uncenter the orthogonal linear concept
vectors.
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Iteration in ISR
We observe that the learned subspaces from OSCaR are not completely
orthogonal
As such, we iteratively run the entire centering, rectification, and uncentering
process leading to our approach

Table 1: Dot Product Scores (dotP) on Gender Terms vs Pleasant/Unpleasant per iteration.

Before Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8 Iter 9 Iter 10

dotP ISR 0.029 0.007 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
dotP iOSCaR 0.029 0.128 0.204 0.340 0.532 0.716 0.535 0.731 0.473 0.686 0.667

Note: iOSCaR denotes iteratively running OSCaR
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Evaluation of Debiasing and Rectification

We evaluate the effectiveness of ISR in two ways:
⋆ how well it actually orthogonalizes concepts
⋆ how well it reduces bias
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Evaluation using WEAT

Table 2: WEAT Score on Pairs of Concepts.

Concept1 Concept2 Orig. LP HD INLP OSCaR SR iOSCaR ISR

Gen(M/F) Career/Family 0.7507 0.7713 0.2271 0.3503 0.3343 0.3235 0.2154 0.0114
Gen(M/F) Math/Art 0.7302 0.6975 0.1127 0.1262 0.5437 0.2928 0.4435 0.0148
Gen(M/F) Sci/Art 1.1557 0.9068 0.1381 0.3776 0.8642 0.4245 0.5139 0.0140
Name(M/F) Career/Family 1.7303 0.0421 0.0992 0.7916 0.8950 0.6556 0.3143 0.0186
Name(E/A) Please/Un 1.3206 0.0800 0.0518 0.0960 0.3043 0.7015 0.0527 0.1678
Flower/Insect Please/Un 1.3627 0.2395 0.1363 0.2713 0.6348 0.3957 0.1338 0.0254
Music/Weap Please/Un 1.4531 0.0373 0.0942 0.0925 1.0135 0.4728 0.2043 0.0770
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Evaluation using SEAT: Pre-trained Language Models

Table 3: SEAT test result (effect size) of gender debiased BERT and RoBERTa models. An effect size
closer to 0 indicates less (biased) association.

Model SEAT-6 SEAT-6b SEAT-7 SEAT-7b SEAT-8 SEAT-8b Avg (↓)
BERT 0.931 0.090 −0.124 0.937 0.783 0.858 0.620
+ CDA 0.846 0.186 −0.278 1.342 0.831 0.849 0.722
+ DROPOUT 1.136 0.317 0.138 1.179 0.879 0.939 0.765
+ INLP 0.317 −0.354 −0.258 0.105 0.187 −0.004 0.204
+ SentenceDebias 0.350 −0.298 −0.626 0.458 0.413 0.462 0.434
+ iOSCaR (Our approach) 0.931 0.078 −1.447 −1.178 −1.21 −1.491 1.056
+ ISR (Our approach) 0.048 −0.264 −0.253 −0.035 0.243 0.295 0.190

RoBERTa 0.922 0.208 0.979 1.460 0.810 1.261 0.940
+ CDA 0.976 0.013 0.848 1.288 0.994 1.160 0.880
+ DROPOUT 1.134 0.209 1.161 1.482 1.136 1.321 1.074
+ INLP 0.812 0.059 0.604 1.407 0.812 1.246 0.823
+ SentenceDebias 0.755 0.068 0.869 1.372 0.774 1.239 0.846
+ iOSCaR (Our approach) 0.894 0.268 0.574 0.648 0.504 0.729 0.603
+ ISR (Our approach) 0.554 0.099 0.296 0.546 0.394 0.419 0.385
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We introduced a new mechanism for augmenting vectorized
embedding representations, namely Iterative Subspace
Rectification (ISR)
Our approach:

⋆ Offers improved bias removal while retaining the key concept
information

⋆ Can be extended to multiple concept subspaces
⋆ Explicitly encodes concepts along the coordinate axis, making

the resulting representations Interpretable
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Thank you for your attention!
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