Interpretable Debiasing of Vectorized Language Representations with Iterative Orthogonalization

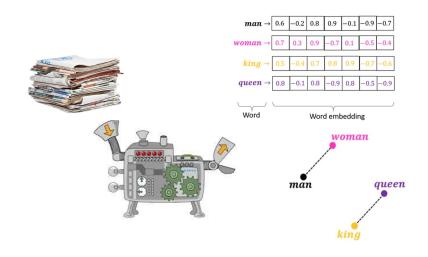
Prince Osei Aboagye¹, Yan Zheng², Jack Shunn¹, Chin-Chia Michael Yeh², Junpeng Wang², Zhongfang Zhuang², Huiyuan Chen², Liang Wang², Wei Zhang², Jeff M. Phillips¹

¹University of Utah ²Visa Research

ICLR, May 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

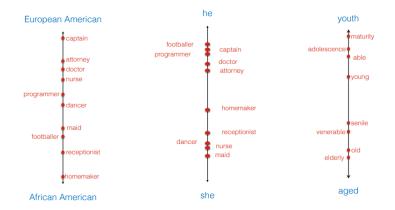
Introduction	Background	Our Proposed Method	Evaluation	Conclusion
●00	000		000	00
	1.15			



▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Introduction	Background	Our Proposed Method	Evaluation	Conclusion
000	000		000	00

Bias in Representation

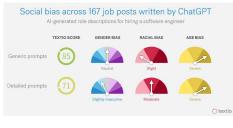


Our Proposed Method

Evaluation

Conclusion

Bias Amplification in ChatGPT



Source: https://textio.com/blog/chatgpt-writes-job-posts/99089591200

02-03-23 | WORKPLACE EVOLUTION

We asked ChatGPT to write performance reviews and they are wildly sexist (and racist)

Textio's cofounder Kieran Snyder observes that it takes so little for ChatGPT to start baking gendered assumptions into otherwise highly generic feedback.

ChatGPT: Historian of Philosophy.

"Name 10 philosophers"

1/6

2:01 PM · Mar 3, 2023 · 2.4M Views

3,638 Retweets 860 Quotes 15K Likes 2,016 Bookmarks

Source: https://www.fastcompany.com/90844066/chatgpt-write-performance-reviews-sexist-and-racist

Source: https://mobile.twitter.com/dk_munro/status/1631761802500423680

Introduction	Background	Our Proposed Method	Evaluation	Conclusion
000	●00		000	00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Debiasing Representations

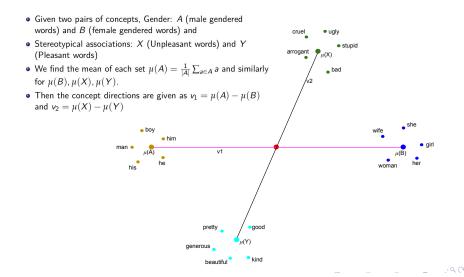
- Concept Subspaces Identification
- Debiasing and Disentangling of Subspaces

Our Proposed Method

Evaluation

Conclusion

Concept Subspaces Identification: Two Means



Debiasing and Disentanglement of Subspaces

- Linear Projection, LP (Dev & Phillips, 2019)
- Hard Debiasing, HD (Bolukbasi et al., 2016)
- Iterative Null Space Projection, INLP (Ravfogel et al., 2020)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• OSCaR (Dev et al., 2021)

Introduction	Background	Our Proposed Method	Evaluation	Conclusion
000	000	●00000	000	

Iterative Subspace Rectification

- In this work, we propose a new mechanism to augment a word vector embedding representation that offers:
 - \star improved bias removal while retaining the key information
 - \star resulting in the interpretability of the representation.
- We build on top of Orthogonal Subspace Correction and Rectification (OSCaR)
- We call our approach iterative subspace rectification (ISR), but add some subtle but significant modifications

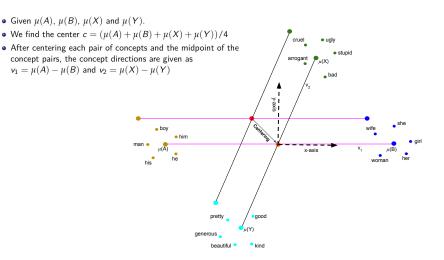
Introduction	Background	Our Proposed Method	Evaluation	Conclusion
000	000		000	00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Significant modifications to OSCaR

- Centering in ISR
- Rectification in ISR
- Uncentering in ISR
- Iteration in ISR

Introduction	Background	Our Proposed Method	Evaluation	Conclusion
000	000		000	00
Contraint				



Introduction 000	Background 000	Our Proposed Method	Evaluation 000	Conclusion

Rectification/Orthogonalization in ISR

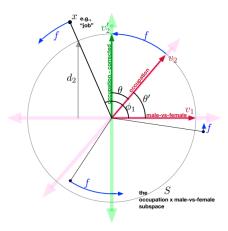


Image Credit: Dev, et al., 2021, "OSCaR: Orthogonal Subspace Correction and Rectification of Biases in Word Embeddings" $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Introduction	Background	Our Proposed Method	Evaluation	Conclusion
000	000	○○○○●○	000	00
Uncentering	g in ISR			

• After rectification, we uncenter the orthogonal linear concept vectors.

(ロ)、(型)、(E)、(E)、 E) の(()

Introduction	Background	Our Proposed Method	Evaluation	Conclusion
000	000	00000●	000	00
Iteration i	n ISR			

- We observe that the learned subspaces from OSCaR are not completely orthogonal
- As such, we iteratively run the entire centering, rectification, and uncentering process leading to our approach

Table 1: Dot Product Scores (dotP) on Gender Terms vs Pleasant/Unpleasant per iteration.

	Before	lter 1	lter 2	lter 3	lter 4	lter 5	lter 6	lter 7	lter 8	lter 9	lter 10
dotP ISR	0.029	0.007	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
dotP iOSCaR	0.029	0.128	0.204	0.340	0.532	0.716	0.535	0.731	0.473	0.686	0.667

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Note: iOSCaR denotes iteratively running OSCaR

Introduction	Background	Our Proposed Method	Evaluation	Conclusion
000	000		●00	00

Evaluation of Debiasing and Rectification

- We evaluate the effectiveness of ISR in two ways:
 - ⋆ how well it actually orthogonalizes concepts

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $\star\,$ how well it reduces bias

Evaluation using WEAT

Concept1	Concept2	Orig.	LP	HD	INLP	OSCaR	SR	iOSCaR	ISR
Gen(M/F)	Career/Family	0.7507	0.7713	0.2271	0.3503	0.3343	0.3235	0.2154	0.0114
Gen(M/F)	Math/Art	0.7302	0.6975	0.1127	0.1262	0.5437	0.2928	0.4435	0.0148
Gen(M/F)	Sci/Art	1.1557	0.9068	0.1381	0.3776	0.8642	0.4245	0.5139	0.0140
Name(M/F)	Career/Family	1.7303	0.0421	0.0992	0.7916	0.8950	0.6556	0.3143	0.0186
Name(E/A)	Please/Un	1.3206	0.0800	0.0518	0.0960	0.3043	0.7015	0.0527	0.1678
Flower/Insect	Please/Un	1.3627	0.2395	0.1363	0.2713	0.6348	0.3957	0.1338	0.0254
Music/Weap	Please/Un	1.4531	0.0373	0.0942	0.0925	1.0135	0.4728	0.2043	0.0770

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Table 2: WEAT Score on Pairs of Concepts.

Evaluation using SEAT: Pre-trained Language Models

Table 3: SEAT test result (effect size) of gender debiased BERT and RoBERTa models. An effect size closer to 0 indicates less (biased) association.

Model	SEAT-6	SEAT-6b	SEAT-7	SEAT-7b	SEAT-8	SEAT-8b	Avg (\downarrow)
BERT	0.931	0.090	-0.124	0.937	0.783	0.858	0.620
+ CDA	0.846	0.186	-0.278	1.342	0.831	0.849	0.722
+ DROPOUT	1.136	0.317	0.138	1.179	0.879	0.939	0.765
+ INLP	0.317	-0.354	-0.258	0.105	0.187	-0.004	0.204
+ SentenceDebias	0.350	-0.298	-0.626	0.458	0.413	0.462	0.434
+ iOSCaR (Our approach)	0.931	0.078	-1.447	-1.178	-1.21	-1.491	1.056
+ ISR (Our approach)	0.048	-0.264	-0.253	-0.035	0.243	0.295	0.190
RoBERTa	0.922	0.208	0.979	1.460	0.810	1.261	0.940
+ CDA	0.976	0.013	0.848	1.288	0.994	1.160	0.880
+ DROPOUT	1.134	0.209	1.161	1.482	1.136	1.321	1.074
+ INLP	0.812	0.059	0.604	1.407	0.812	1.246	0.823
+ SentenceDebias	0.755	0.068	0.869	1.372	0.774	1.239	0.846
+ iOSCaR (Our approach)	0.894	0.268	0.574	0.648	0.504	0.729	0.603
+ ISR (Our approach)	0.554	0.099	0.296	0.546	0.394	0.419	0.385

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Background	Our Proposed Method	Evaluation	Conclusion
000	000		000	●0

- We introduced a new mechanism for augmenting vectorized embedding representations, namely Iterative Subspace Rectification (ISR)
- Our approach:
 - $\star\,$ Offers improved bias removal while retaining the key concept information
 - $\star\,$ Can be extended to multiple concept subspaces
 - Explicitly encodes concepts along the coordinate axis, making the resulting representations Interpretable

Introduction	Background	Our Proposed Method	Evaluation	Conclusion
000	000		000	○●

Thank you for your attention!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ