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Motivation

Generalization analysis of learning algorithms often builds on a critical assumption
that training examples are independently identically distributed, which is often
violated in practical problems such as time series prediction.

A widely used relaxation of the i.i.d. assumption is to assume the observations are
drawn from a mixing process, where the dependency between observations weakens
over time.

In this paper, we use algorithmic stability to study the generalization performance
of learning algorithms with ψ-mixing data.



Stationary Mixing Process

Let Z = {Zt}∞t=−∞ be a stationary sequence of random variables. For any i , j ∈ N, let σj
i

denote the σ-algebra generated by the random variables Zk , i ≤ k ≤ j .

1 φ-Mixing Sequence: For any k ∈ N, the φ-mixing coefficient of Z is defined as

φ(k) = sup
n,A∈σ∞

n+k
,B∈σn

−∞

∣∣Pr(A|B)− Pr(A)
∣∣.

Z is said to be φ-mixing if φ(k) → 0 as k → ∞.

2 ψ-Mixing Sequence: For any k ∈ N, the ψ-mixing coefficient of the stochastic
process Z is defined as

ψ(k) = sup
n,A∈σ∞

n+k
,B∈σn

−∞

∣∣Pr(A ∩ B)/Pr(A)Pr(B)− 1
∣∣.

Z is said to be ψ-mixing if ψ(k) → 0 as k → ∞.

3 φ′-Mixing Coefficient: Our stability analysis requires a different mixing coefficient
defined as follows

φ′(k) = sup
n,A∈σn−k

−∞,zn∈σn
n ,B∈σ∞

n+k

∣∣Pr(zn|A,B)− Pr(zn)
∣∣.



Definitions

Let L, γ > 0 and µ ≥ 0. Let f : W ×Z 7→ R.
Lipschitzness: We say f is L-Lipschitz continuous if |f (w; z)− f (w′; z)| ≤ L∥w − w′∥

for any w,w′, z .

Smoothness: We say f is γ-smooth if ∥∇f (w; z)−∇f (w′; z)∥ ≤ γ∥w − w′∥ for any
w,w′, z .

Convexity: We say f is µ-strongly convex if for any w,w′, z we have
f (w; z)− f (w′; z)− ⟨w − w′,∇f (w′; z)⟩ ≥ µ

2
∥w − w′∥2. We say f is

convex if it is µ-strongly convex with µ = 0.

Algorithmic Stability

Let S = {z1, . . . , zn},S ′ = {z ′1, . . . , z ′n} be independently drawn from sample space.

We say A is ϵ-uniformly stable if for any datasets S , Ŝ ∈ Zn that differ by at most a
single example we have

sup
z

[
f (wS ; z)− f (wŜ ; z)

]
≤ ϵ.



Moment Bound For φ-Mixing Sequence

Moment Bound
Let X1, . . . ,Xn be a finite contiguous subsequence from a φ-mixing sequence. Let
Zi be a function of Xi with E[Zi ] = 0 and Pr{|Zi | > ϵ̃} ≤ 2 exp(−ϵ̃2/b). Then for
any p ≥ 1 we have ∥∥∥ n∑

i=1

Zi

∥∥∥
p
≤ (9 + log(n))p∆n

√
2nb.

The bound matches the existing moment bounds for i.i.d. random variables up to
a logarithmic factor



Concentration Inequality For φ-Mixing Sequence

Concentration Inequality

Let Z1, . . . ,Zn be a finite contiguous subsequence from a φ-mixing sequence. Let
g1, . . . , gn be some functions gi : Zn 7→ R such that the following holds for any
i ∈ [n]∣∣EZ[n]\[i ] [gi (Z )|Zi ]

∣∣ ≤ M almost surely,

EZi [gi (Z )|Z[n]\[i ]] = 0 a.s.,

gi is β-Lipschitz.

Then for any p ≥ 1 we have

∥∥∥ n∑
i=1

gi

∥∥∥
p
≤ 3M∆n

√
2pn + 2kpβ

k−1∑
l=0

(9 + l)∆2
2l .

Our bound recovers the existing result in the i.i.d. case.

The concentration inequality is developed for φ-mixing sequence and can be
directly applied to ψ-mixing sequence.



Error Decomposition

let S i
i,b = {z1, . . . , zi−b−1, z

′
i , zi+b+1, . . . , zn−b}. We then define the following

random variables

gi = Ez′i

[
Ez′′i

[f (wS i
i,b
; z ′′i )]− f (wS i

i,b
; zi )

]
, ∀i ∈ [n].

Error Decomposition

Let S be drawn from a ψ-mixing distribution. If the algorithm A is β-uniformly
stable and the loss function is bounded by M > 0, then

∣∣n(F (wS)− FS(wS))
∣∣ ≤ 2n(3b + 1)β + nM(φ(b) + φ′(b)) +

∣∣ n∑
i=1

gi
∣∣.



Stability and Generalization

General Mixing Stability Bound

Let S be drawn from a ψ-mixing distribution. Then for any b ∈ {0, . . . , n} and any
δ ∈ (0, 1), the following inequality holds with probability at least 1− δ∣∣F (wS)− FS(wS)

∣∣ = O
(
φ′(b) + ∆n

√
n−1 log(1/δ) + β(b +∆2

n log
2 n log(1/δ))

)
.

In the i.i.d. case, stability bound becomes∣∣F (wS)− FS(wS)
∣∣ = O

(√
n−1 log(1/δ) + β log2 n log(1/δ)

)
,

which matches existing stability-based bounds up to a logarithmic factor.

Our stability bound improves on previous state-of-the-art results by a factor of
O(

√
n).



Thank you!
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