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Motivation

@ Generalization analysis of learning algorithms often builds on a critical assumption
that training examples are independently identically distributed, which is often
violated in practical problems such as time series prediction.

@ A widely used relaxation of the i.i.d. assumption is to assume the observations are
drawn from a mixing process, where the dependency between observations weakens
over time.

@ In this paper, we use algorithmic stability to study the generalization performance
of learning algorithms with -mixing data.



Stationary Mixing Process

Let Z = {Z,}2_, be a stationary sequence of random variables. For any i,j € N, let oJ,
denote the o-algebra generated by the random variables Zi, i < k < j.

@ p-Mixing Sequence: For any k € N, the p-mixing coefficient of Z is defined as
p(k) = sup |Pr(A|B) — Pr(A)|.
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Z is said to be ¢-mixing if (k) — 0 as k — oo.
@ Y-Mixing Sequence: For any k € N, the ¥-mixing coefficient of the stochastic

process Z is defined as

P(k) = sup |Pr(An B)/Pr(A)Pr(B) — 1|.
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Z is said to be ¢-mixing if ¥(k) — 0 as k — 0.

© ¢'-Mixing Coefficient: Our stability analysis requires a different mixing coefficient
defined as follows

o'(k) = sup |Pr(z,,|A7 B) — Pr(z,,)}.
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Definitions

Let L,vy>0and 4 >0. Let f : W x Z— R.
Lipschitzness: We say f is L-Lipschitz continuous if |f(w; z) — f(w’; z)| < L|lw — w’||
for any w,w’, z.
Smoothness: We say f is y-smooth if |[Vf(w;z) — Vf(w'; z)|| < v|lw — w’|| for any

w,w', z.

Convexity: We say f is u-strongly convex if for any w,w’, z we have
f(w;z) — f(w';2) — (w —w/, VF(W';2)) > £|lw — w'||°>. We say f is
convex if it is p-strongly convex with p = 0.

Algorithmic Stability

Let S={z1,...,2.},S" = {z,..., 2z} be independently drawn from sample space.

We say A is e-uniformly stable if for any datasets S, § € Z" that differ by at most a
single example we have
sup [f(ws; z) — f(wg; )] <e.




Moment Bound For ¢-Mixing Sequence

Moment Bound

Let Xi,..., X, be a finite contiguous subsequence from a ¢-mixing sequence. Let
Z; be a function of X; with E[Z;] = 0 and Pr{|Z;| > €} < 2exp(—&2/b). Then for
any p > 1 we have

Dk

; < (9 + log(n))pA,V2nb.

The bound matches the existing moment bounds for i.i.d. random variables up to
a logarithmic factor J




Concentration Inequality For ¢-Mixing Sequence

Concentration Inequality

Let Z1,...,Z, be a finite contiguous subsequence from a ¢-mixing sequence. Let

g1, ---,&n be some functions g; : Z” — R such that the following holds for any
i€ [n]

o |Ez, ,&i(2)IZi]| < M almost surely,
o Ez[gi(Z2)|Z\g] =0 ass.,
@ g; is B-Lipschitz.

Then for any p > 1 we have
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@ Our bound recovers the existing result in the i.i.d. case.

@ The concentration inequality is developed for ¢-mixing sequence and can be
directly applied to 1-mixing sequence.




Error Decomposition

let S,fb ={z1,...,2_p-1,2, Zi1bt1,- - - s Zn—b}. We then define the following
random variables

8 =By [Ex[f(ws; i 2)] - f(ws; 1 2)], Vi€ [n].

Error Decomposition

Let S be drawn from a t-mixing distribution. If the algorithm A is S-uniformly
stable and the loss function is bounded by M > 0, then

|n(F(ws) — Fs(ws))| < 2n(3b+1)8+ nM(p(b) + ¢'(b) + | Y _ ail.
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Stability and Generalization

General Mixing Stability Bound

Let S be drawn from a #)-mixing distribution. Then for any b € {0

.,n} and any
6 € (0,1

), the following inequality holds with probability at least 1 — §

|F(ws) — Fs(ws)| = O(go'(b) + Anv/n—1log(1/6) + B(b + A2 log? nlog(1/§))).

@ In the i.i.d. case, stability bound becomes
|F(ws — Fs( ws)| = O(y/n1log(1/6) + Blog® nlog(1/6)),
which matches existing stability-based bounds up to a logarithmic factor.

@ Our stability bound improves on previous state-of-the-art results by a factor of

O(v/n).
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