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Graph Neural Networks

e Let G = (V,€&) be a graph.

@ Graph neural networks (GNNs) learn node representations for graphs
by message passing.

o XY = Fkt D) (x, {xy : (0, v) € E))

@ Graph convolutional networks:
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GNNs and long-range tasks: NeighborsMatch

o NeighborsMatch task [Alon and Yahav, 2021]: Root node T has some
number of orange neighbors. Goal is to identify the leaf node which
has the same number of neighbors as T.

@ Exponentially growing receptive field with a fixed hidden dimension
results in oversquashing.
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Measuring oversquashing via the Cheeger constant

@ How do we measure how extreme the “bottleneck" of a graph is?

@ Cheeger constant:

|0S]|
h(G) := -
(6):= s min TS

where 0S consists of the set of edges (x,y) where x € S and y € S€.
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(c)

Fig. 2. (a) Dumbbell graph K, —Ky, (b) d-regular ring-of-cliques comprising
of m cliques connected in a ring, (c) Infinite 3-regular tree. The shaded
portions specify the Cheeger “cut”.
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Measuring oversquashing via the Cheeger constant

o Discrete Cheeger inequality [Cheeger, 1970]:

T2 < h(6) < V2d(d — ),

where p1 > pp > -+ > p, are the eigenvalues of A, and d is the
degree of all nodes of A.

@ Bounding the Cheeger constant is equivalent to bounding the spectral
gap A2 (the second eigenvalue of the Laplacian
L=1-D"12AD-1/?)
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First-order spectral rewiring (FoSR)

o Estimate the change in spectral gap from adding edges.

o Add the edge which maximizes this increase.

For symmetric matrices M € R"*" with distinct eigenvalues, the i-th
largest eigenvalue \; satisfies

VMA,'(M) = X,'X-T

1

where x; denotes the (normalized) eigenvector for the i-th largest
eigenvalue of M.

.
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First-order Spectral Rewiring

@ This gives us the first-order approximation

Ao(M + M) = Ap(M) + Trace(VAg (IM)) = Xa(M) + x5 (6M)xo.

The first-order change in Ao = X\o(D~Y/2AD~Y/2) from adding the edge
(u,v) is

2y + 2203 ( Vs _ 1) + 220 ( vdy__ 1> ,
VIt d)(VItdy) 14, 14,
(1)

where x denotes the second eigenvector of D~Y2AD~Y2 and x, denotes
the u-th entry of x.

.
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First-order spectral rewiring

@ FoSR operates by minimizing the dominant term of (2), given by

2X, Xy

(VI+d)(Vi+d,)

@ This approximation is most accurate when d,, and d, are large and
comparable in size.

@ Alternate between choosing an edge to add which minimizes the above
expression, and updating our estimate of x via power iteration.
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FoSR Algorithm

Algorithm 1 FoSR: First-order Spectral Rewiring

Input: G = (V, ), iteration count k, initial number of power iterations r
Qutput: Rewired graph G’ = (V,£")

1: Initialize xx € R™ arbitrarily
2: fori=1,2--- rdo
3: T4 D V2ZAD V2p — (‘%f)d > Approximale second eigenvector before rewiring
4: T
H-FI\Q
5: end for
6: fori=12--- kdo N
7: Add edge (i, j) which minimizes ———"4—
(14di)(1+d;)
8 x4 D Y2ZAD Y2 — (""#‘f}d > Power iteration to update second eigenvector
9: T A
H—’l\?
10: end for
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Relational rewiring

@ Adding too many edges can result in oversmoothing, resulting in all
nodes collapsing to similar features [Li et al., 2018],
[Oono and Suzuki, 2020].

@ Oversmoothing is caused by a high spectral gap. Comparing to
oversquashing, which is caused by a low spectral gap, we see a
tradeoff.

@ Is there a way to prevent both simultaneously?
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Relational Rewiring

@ We can form a generalization for GNNs using relational rewiring
[Brockschmidt, 2020].

o Idea: let R be a finite set of relation types. We assign each edge a
relation type r € R. In our GNN, we have different learned mappings
for each relation type.

AT = ¢, (h\(/k), DoreR DoueN;(v) ¢k,r(h£k)7 h\(/k))> ,

@ In other words, we use separate weights for the original graph edges
and for the rewired edges.
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R-GNNs prevent oversmoothing

@ R-GNNs prevent oversmoothing by de-weighting the rewired edges and
increasing the weights of self-loops.

@ Given a scalar field f € R”, its Dirichlet energy with respect to G is

defined as
‘ 2
2ZA,J< f) — fTIF

For a vector field X € R"*P, we define

2
Xi k
A; S, = Trace(X T LX).
=30 J<ﬁi E-) (XTLx)

ij,k
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R-GNNs prevent oversmoothing

@ Let G be a graph and ¢ : R™P — R"*P be a mapping. We define the
rate of smoothing of  with respect to G as

SUPX.£(X) 40 E(so(X))/Em) V2

RSg(¢) =1
supx.x o le(X)IIE/IXI1

Let Gy = (V,&1) be a graph and Gy = (V, &1 U &) be a rewiring of G .
Consider an R-GCN layer ¢, with relations i = &1, r» = E>. Then for any
A € [0, \2(L(G2))], there exist values of ©,01,©, for which ¢ smooths
with rate RSg,(p) = A with respect to Gs.

@ This theorem says that R-GNNs can flexibly learn the optimal amount
of smoothing, especially with rewired edges.
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Experiments

Table 1: Results of rewiring methods for GCN and GIN comparing standard and relational. The best
results in each setting are highlighted in bold font and best across settings are highlighted red.
GCN
Rewiring REDDIT-BINARY IMDB-BINARY MUTAG ENZYMES PROTEINS COLLAB
None  68.255 £ 1.098 49.770 + 0.817 72.150 + 2.442 27.667 + 1.164 70.982 + 0.737 33.784 1 0.488
DIGL  40.980 £ 0.680 49.910 £ 0.841 71350 £ 2.391 27.517 + 1.053 70.607 + 0.731 15.530 £ 0.294
SDRE 68620 + 0.851 49.400 + 0.904 71.050 + 1.872 28.367 + 1.174 70.920 + 0.792 33.448 + 0.472
FoSR  70.330 4 0.727 49.660 + 0.864 B0.000 + 1.574 25.067 + 0.994 73.420 £ 0.811 33.836 1+ 0.584

R-GCN
Rewiring REDDIT-BINARY IMDB-BINARY MUTAG ENZYMES PROTEINS COLLAB
None 49.850 4+ 0.653 50.012 £+ 0.917 69.250 + 2,085 28.600 + 1.186 69.518 + 0.725 33.602 + 1.047
DIGL 49.995 1 0,619 49.670 L 0.843 73.400 1 2.007 28.283 1 1.213 68.232 | 0.851 16.926 | 1.441

SDRF 58.620 £ 0.647 53.640 - 1.043 72.300 + 2.215 33.483 & 1.245 69.107 1 0.759 67.990 1+ 0.386
FoSR 76.590 | 0.531 64.050 1 1.123 84.450 | 1.517 35.633 | 1.151 73.795 | 0.692 70.650 | (.482

GIN
Rewiring REDDIT-BINARY IMDB-BINARY MUTAG ENZYMES PROTEINS COLLAB
None 86.785 L 1.056 T0.180 £ 0.992 77.700 £+ 3.602 33.800 + 1.115 70.804 & 0.827 T72.992 1 0.384
DIGL T6.035 £ 0.774 64.390 £+ 0.907 79.700 & 2.150 35.717 £ 1.198 70.759 + 0.774 54.504 + 0.410

SDRF 86,440 + 0.590 69.720 - 1.152 78400 - 2.803 35.817 1 1.094 69.813 1 0.792 T2.958 1+ 0.419
FoSR 87.350 1+ 0.598 T1.210 -+ 0.919 78.000 + 2.217 29.200 + 1.376 75.107 + 0.817 73.278 + 0.416

R-GIN
Rewiring REDDIT-BINARY IMDB-BINARY MUTAG ENZYMES PROTEINS COLLAB
None R7.965 + (0.664 63889 £ 0.872 83.060 + 1.439 39.017 + 1.166 70.500 + 0.809 75.544 + 0.323
DIGL T4.425 1 0.723 63.930 L 0.947 81.450 1 1.488 37.600 L 1.198 71.312 1 (0L.757 54.714 | 0.416

SDRF 86.825 £ 0,523 70.210 £+ 0.806 82.700 + 1.782 39.583 & 1.333 T0.696 1 0.815 T76.480 L 0.388
FoSR 89.665 | 0.416 T1.810 1 0.880 86.150 | 1.492 45.550 1 1.258 T4.670 1 0.692 T6.806 1 0.451
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Experiments
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@ The FoSR algorithm makes two approximations: one to get the
first-order change, and another to select the dominant term. We
record all three here for the ENZYMES dataset.
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Experiments
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@ Tradeoff between oversquashing and oversmoothing; the GNN
smooths more as more rewiring edges are added.

@ Dirichlet energy closely matches test accuracy in its peak.
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Experiments

Rewiring Erdés-Rényi (FOSR)

Rewiring Erdés-Rényi (SDRF)
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@ Rewiring for Erdds-Reny graphs with edge probability p =
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e Computational complexity for adding a single edge with FoSR is O(m)
typically and O(n?) in the worst case. For SDRF, it is O(md?), where

d is the maximal node degree.
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