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Graph Neural Networks

Let G = (V, E) be a graph.
Graph neural networks (GNNs) learn node representations for graphs
by message passing.
x
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Graph convolutional networks:
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GNNs and long-range tasks: NeighborsMatch

NeighborsMatch task [Alon and Yahav, 2021]: Root node T has some
number of orange neighbors. Goal is to identify the leaf node which
has the same number of neighbors as T .
Exponentially growing receptive field with a fixed hidden dimension
results in oversquashing.
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Measuring oversquashing via the Cheeger constant

How do we measure how extreme the “bottleneck" of a graph is?
Cheeger constant:

h(G ) := min
S⊂V:|S|≤n/2

|∂S|
|S|

,

where ∂S consists of the set of edges (x , y) where x ∈ S and y ∈ SC .
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Cheeger cuts
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Measuring oversquashing via the Cheeger constant

Discrete Cheeger inequality [Cheeger, 1970]:

d − µ2

2
≤ h(G ) ≤

√
2d(d − µ2),

where µ1 ≥ µ2 ≥ · · · ≥ µn are the eigenvalues of A, and d is the
degree of all nodes of A.
Bounding the Cheeger constant is equivalent to bounding the spectral
gap λ2 (the second eigenvalue of the Laplacian
L = I − D−1/2AD−1/2).
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First-order spectral rewiring (FoSR)

Estimate the change in spectral gap from adding edges.
Add the edge which maximizes this increase.

Theorem
For symmetric matrices M ∈ Rn×n with distinct eigenvalues, the i-th
largest eigenvalue λi satisfies

∇Mλi (M) = xix
T
i ,

where xi denotes the (normalized) eigenvector for the i-th largest
eigenvalue of M.
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First-order Spectral Rewiring

This gives us the first-order approximation

λ2(M + δM) ≈ λ2(M) + Trace(∇λT2 (δM)) = λ2(M) + xT2 (δM)x2.

Theorem
The first-order change in λ2 = λ2(D

−1/2AD−1/2) from adding the edge
(u, v) is

2xuxv
(
√

1 + du)(
√

1 + dv )
+ 2λ2x

2
u

( √
du√

1 + du
− 1
)
+ 2λ2x

2
v

( √
dv√

1 + dv
− 1
)
,

(1)

where x denotes the second eigenvector of D−1/2AD−1/2, and xu denotes
the u-th entry of x .
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First-order spectral rewiring

FoSR operates by minimizing the dominant term of (2), given by

2xuxv
(
√

1 + du)(
√

1 + dv )
.

This approximation is most accurate when du and dv are large and
comparable in size.
Alternate between choosing an edge to add which minimizes the above
expression, and updating our estimate of x via power iteration.
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FoSR Algorithm
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Relational rewiring

Adding too many edges can result in oversmoothing, resulting in all
nodes collapsing to similar features [Li et al., 2018],
[Oono and Suzuki, 2020].
Oversmoothing is caused by a high spectral gap. Comparing to
oversquashing, which is caused by a low spectral gap, we see a
tradeoff.
Is there a way to prevent both simultaneously?
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Relational Rewiring

We can form a generalization for GNNs using relational rewiring
[Brockschmidt, 2020].
Idea: let R be a finite set of relation types. We assign each edge a
relation type r ∈ R. In our GNN, we have different learned mappings
for each relation type.

h
(k+1)
v = ϕk

(
h
(k)
v ,
∑

r∈R
∑

u∈Nr (v)
ψk,r (h

(k)
u , h

(k)
v )
)
,

In other words, we use separate weights for the original graph edges
and for the rewired edges.
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R-GNNs prevent oversmoothing

R-GNNs prevent oversmoothing by de-weighting the rewired edges and
increasing the weights of self-loops.
Given a scalar field f ∈ Rn, its Dirichlet energy with respect to G is
defined as

E (f ) := 1
2

∑
i ,j

Ai ,j

(
fi√
di

−
fj√
dj

)2

= f TLf .

For a vector field X ∈ Rn×p, we define

E (X ) := 1
2

∑
i ,j ,k

Ai ,j

(
Xi ,k√
di

−
Xj ,k√
dj

)2

= Trace(XTLX ).
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R-GNNs prevent oversmoothing

Let G be a graph and φ : Rn×p → Rn×p be a mapping. We define the
rate of smoothing of φ with respect to G as

RSG(φ) := 1 −

(
supX :E(X ) ̸=0 E (φ(X ))/E (X )

supX :X ̸=0 ∥φ(X )∥2
F/∥X∥2

F

)1/2

.

Theorem
Let G1 = (V, E1) be a graph and G2 = (V, E1 ∪ E2) be a rewiring of G1.
Consider an R-GCN layer φ, with relations r1 = E1, r2 = E2. Then for any
λ ∈ [0, λ2(L(G2))], there exist values of Θ,Θ1,Θ2 for which φ smooths
with rate RSG2(φ) = λ with respect to G2.

This theorem says that R-GNNs can flexibly learn the optimal amount
of smoothing, especially with rewired edges.
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Experiments
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Experiments

The FoSR algorithm makes two approximations: one to get the
first-order change, and another to select the dominant term. We
record all three here for the ENZYMES dataset.
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Experiments

Tradeoff between oversquashing and oversmoothing; the GNN
smooths more as more rewiring edges are added.
Dirichlet energy closely matches test accuracy in its peak.
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Experiments

Rewiring for Erdös-Reny graphs with edge probability p = 5 log n
n .

Computational complexity for adding a single edge with FoSR is O(m)
typically and O(n2) in the worst case. For SDRF, it is O(md3), where
d is the maximal node degree.
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