FoSR: First-order spectral rewiring for addressing oversquashing in GNNs

Kedar Karhadkar*, Pradeep Kr. Banerjee[†], Guido Montúfar*[†] *UCLA, [†]MPI MiS

ICLR 2023

Graph Neural Networks

- Let $G = (\mathcal{V}, \mathcal{E})$ be a graph.
- Graph neural networks (GNNs) learn node representations for graphs by message passing.

•
$$x_v^{(k+1)} = f^{(k+1)}(x_v, \{x_u : (u, v) \in \mathcal{E}\})$$

• Graph convolutional networks:

GNNs and long-range tasks: NeighborsMatch

- NeighborsMatch task [Alon and Yahav, 2021]: Root node T has some number of orange neighbors. Goal is to identify the leaf node which has the same number of neighbors as T.
- Exponentially growing receptive field with a fixed hidden dimension results in *oversquashing*.

How do we measure how extreme the "bottleneck" of a graph is?Cheeger constant:

$$h(G) := \min_{\mathcal{S} \subset \mathcal{V}: |\mathcal{S}| \leq n/2} \frac{|\partial \mathcal{S}|}{|\mathcal{S}|},$$

where ∂S consists of the set of edges (x, y) where $x \in S$ and $y \in S^{C}$.

Fig. 2. (a) Dumbbell graph K_n - K_n , (b) *d*-regular ring-of-cliques comprising of *m* cliques connected in a ring, (c) Infinite 3-regular tree. The shaded portions specify the Cheeger "cut".

• Discrete Cheeger inequality [Cheeger, 1970]:

$$\frac{d-\mu_2}{2} \leq h(G) \leq \sqrt{2d(d-\mu_2)},$$

where $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$ are the eigenvalues of A, and d is the degree of all nodes of A.

• Bounding the Cheeger constant is equivalent to bounding the spectral gap λ_2 (the second eigenvalue of the Laplacian $L = I - D^{-1/2}AD^{-1/2}$).

- Estimate the change in spectral gap from adding edges.
- Add the edge which maximizes this increase.

Theorem

For symmetric matrices $M \in \mathbb{R}^{n \times n}$ with distinct eigenvalues, the *i*-th largest eigenvalue λ_i satisfies

$$\nabla_M \lambda_i(M) = x_i x_i^T,$$

where x_i denotes the (normalized) eigenvector for the *i*-th largest eigenvalue of M.

7 / 20

First-order Spectral Rewiring

• This gives us the first-order approximation

 $\lambda_2(M + \delta M) \approx \lambda_2(M) + \operatorname{Trace}(\nabla \lambda_2^T(\delta M)) = \lambda_2(M) + x_2^T(\delta M) x_2.$

Theorem

The first-order change in $\lambda_2 = \lambda_2(D^{-1/2}AD^{-1/2})$ from adding the edge (u, v) is

$$\frac{2x_{u}x_{v}}{(\sqrt{1+d_{u}})(\sqrt{1+d_{v}})} + 2\lambda_{2}x_{u}^{2}\left(\frac{\sqrt{d_{u}}}{\sqrt{1+d_{u}}} - 1\right) + 2\lambda_{2}x_{v}^{2}\left(\frac{\sqrt{d_{v}}}{\sqrt{1+d_{v}}} - 1\right),$$
(1)

where x denotes the second eigenvector of $D^{-1/2}AD^{-1/2}$, and x_u denotes the u-th entry of x.

• FoSR operates by minimizing the dominant term of (2), given by

$$\frac{2x_ux_v}{(\sqrt{1+d_u})(\sqrt{1+d_v})}.$$

- This approximation is most accurate when d_u and d_v are large and comparable in size.
- Alternate between choosing an edge to add which minimizes the above expression, and updating our estimate of x via power iteration.

Algorithm 1 FoSR: First-order Spectral Rewiring

Input: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, iteration count k, initial number of power iterations r **Output**: Rewired graph $\mathcal{G}' = (\mathcal{V}, \mathcal{E}')$ 1: Initialize $x \in \mathbb{R}^n$ arbitrarily 2: for $i = 1, 2, \cdots, r$ do $x \leftarrow D^{-1/2}AD^{-1/2}x - \frac{\langle x,\sqrt{d} \rangle}{2\pi}d$ > Approximate second eigenvector before rewiring 3. $x \leftarrow \frac{x}{\|x\|_2}$ 4: 5 end for 6: for $i = 1, 2, \dots, k$ do Add edge (i, j) which minimizes $\frac{x_i x_j}{\sqrt{(1+d_i)(1+d_i)}}$ 7: $x \leftarrow D^{-1/2}AD^{-1/2}x - \frac{\langle x, \sqrt{d} \rangle}{2m}d$ \triangleright Power iteration to update second eigenvector 8: $x \leftarrow \frac{x}{\|x\|_2}$ 9: 10: end for

- Adding too many edges can result in *oversmoothing*, resulting in all nodes collapsing to similar features [Li et al., 2018], [Oono and Suzuki, 2020].
- Oversmoothing is caused by a high spectral gap. Comparing to oversquashing, which is caused by a low spectral gap, we see a tradeoff.
- Is there a way to prevent both simultaneously?

- We can form a generalization for GNNs using *relational rewiring* [Brockschmidt, 2020].
- Idea: let \mathcal{R} be a finite set of *relation types*. We assign each edge a relation type $r \in \mathcal{R}$. In our GNN, we have different learned mappings for each relation type.

$$h_{\nu}^{(k+1)} = \phi_k \left(h_{\nu}^{(k)}, \sum_{r \in \mathcal{R}} \sum_{u \in \mathcal{N}_r(\nu)} \psi_{k,r}(h_u^{(k)}, h_{\nu}^{(k)}) \right),$$

• In other words, we use separate weights for the original graph edges and for the rewired edges.

R-GNNs prevent oversmoothing

- R-GNNs prevent oversmoothing by de-weighting the rewired edges and increasing the weights of self-loops.
- Given a scalar field f ∈ ℝⁿ, its Dirichlet energy with respect to G is defined as

$$E(f) := \frac{1}{2} \sum_{i,j} A_{i,j} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2 = f^T L f.$$

For a vector field $X \in \mathbb{R}^{n \times p}$, we define

$$E(X) := \frac{1}{2} \sum_{i,j,k} A_{i,j} \left(\frac{X_{i,k}}{\sqrt{d_i}} - \frac{X_{j,k}}{\sqrt{d_j}} \right)^2 = \operatorname{Trace}(X^T L X).$$

R-GNNs prevent oversmoothing

• Let \mathcal{G} be a graph and $\varphi : \mathbb{R}^{n \times p} \to \mathbb{R}^{n \times p}$ be a mapping. We define the rate of smoothing of φ with respect to \mathcal{G} as

$$RS_{\mathcal{G}}(\varphi) := 1 - \left(\frac{\sup_{X:E(X)\neq 0} E(\varphi(X))/E(X)}{\sup_{X:X\neq 0} \|\varphi(X)\|_F^2/\|X\|_F^2}\right)^{1/2}$$

Theorem

Let $\mathcal{G}_1 = (\mathcal{V}, \mathcal{E}_1)$ be a graph and $\mathcal{G}_2 = (\mathcal{V}, \mathcal{E}_1 \cup \mathcal{E}_2)$ be a rewiring of \mathcal{G}_1 . Consider an R-GCN layer φ , with relations $r_1 = \mathcal{E}_1$, $r_2 = \mathcal{E}_2$. Then for any $\lambda \in [0, \lambda_2(L(\mathcal{G}_2))]$, there exist values of $\Theta, \Theta_1, \Theta_2$ for which φ smooths with rate $RS_{\mathcal{G}_2}(\varphi) = \lambda$ with respect to \mathcal{G}_2 .

• This theorem says that R-GNNs can flexibly learn the optimal amount of smoothing, especially with rewired edges.

Table 1: Results of rewiring methods for GCN and GIN comparing standard and relational. The best results in each setting are highlighted in bold font and best across settings are highlighted red. GCN

Rewiring	REDDIT-BINARY	IMDB-BINARY	MUTAG	ENZYMES	PROTEINS	COLLAB
None	68.255 ± 1.098	49.770 ± 0.817	72.150 ± 2.442	27.667 ± 1.164	70.982 ± 0.737	33.784 ± 0.488
DIGL	49.980 ± 0.680	49.910 ± 0.841	71.350 ± 2.391	27.517 ± 1.053	70.607 ± 0.731	15.530 ± 0.294
SDRF	68.620 ± 0.851	49.400 ± 0.904	71.050 ± 1.872	28.367 ± 1.174	70.920 ± 0.792	33.448 ± 0.472
FoSR	70.330 ± 0.727	49.660 ± 0.864	80.000 ± 1.574	25.067 ± 0.994	73.420 ± 0.811	33.836 ± 0.584
R-GCN						

Rewiring	REDDIT-BINARY	IMDB-BINARY	MUTAG	ENZYMES	PROTEINS	COLLAB
None	49.850 ± 0.653	50.012 ± 0.917	69.250 ± 2.085	28.600 ± 1.186	69.518 ± 0.725	33.602 ± 1.047
DIGL	49.995 ± 0.619	49.670 ± 0.843	73.400 ± 2.007	28.283 ± 1.213	68.232 ± 0.851	16.926 ± 1.441
SDRF	58.620 ± 0.647	53.640 ± 1.043	72.300 ± 2.215	33.483 ± 1.245	69.107 ± 0.759	67.990 ± 0.386
FoSR	76.590 ± 0.531	64.050 ± 1.123	84.450 ± 1.517	35.633 ± 1.151	73.795 ± 0.692	70.650 ± 0.482

GIN

Rewiring	REDDIT-BINARY	IMDB-BINARY	MUTAG	ENZYMES	PROTEINS	COLLAB
None	86.785 ± 1.056	70.180 ± 0.992	77.700 ± 3.602	33.800 ± 1.115	70.804 ± 0.827	72.992 ± 0.384
DIGL	76.035 ± 0.774	64.390 ± 0.907	$\textbf{79.700} \pm 2.150$	35.717 ± 1.198	70.759 ± 0.774	54.504 ± 0.410
SDRF	86.440 ± 0.590	69.720 ± 1.152	78.400 ± 2.803	35.817 ± 1.094	69.813 ± 0.792	72.958 ± 0.419
FoSR	87.350 ± 0.598	71.210 ± 0.919	78.000 ± 2.217	29.200 ± 1.376	$\textbf{75.107} \pm 0.817$	$\textbf{73.278} \pm 0.416$

R-GIN

Rewiring	REDDIT-BINARY	IMDB-BINARY	MUTAG	ENZYMES	PROTEINS	COLLAB
None	87.965 ± 0.564	68.889 ± 0.872	83.050 ± 1.439	39.017 ± 1.166	70.500 ± 0.809	75.544 ± 0.323
DIGL	74.425 ± 0.723	63.930 ± 0.947	81.450 ± 1.488	37.600 ± 1.198	71.312 ± 0.757	54.714 ± 0.416
SDRF	86.825 ± 0.523	70.210 ± 0.806	82.700 ± 1.782	39.583 ± 1.333	70.696 ± 0.815	76.480 ± 0.388
FoSR	89.665 ± 0.416	71.810 ± 0.880	$\textbf{86.150} \pm 1.492$	45.550 ± 1.258	74.670 ± 0.692	$\textbf{76.806} \pm 0.451$

• The FoSR algorithm makes two approximations: one to get the first-order change, and another to select the dominant term. We record all three here for the ENZYMES dataset.

- Tradeoff between oversquashing and oversmoothing; the GNN smooths more as more rewiring edges are added.
- Dirichlet energy closely matches test accuracy in its peak.

- Rewiring for Erdös-Reny graphs with edge probability $p = \frac{5 \log n}{n}$.
- Computational complexity for adding a single edge with FoSR is O(m) typically and $O(n^2)$ in the worst case. For SDRF, it is $O(md^3)$, where d is the maximal node degree.

Alon, U. and Yahav, E. (2021).

On the bottleneck of graph neural networks and its practical implications.

In International Conference on Learning Representations.

Brockschmidt, M. (2020).

GNN-film: Graph neural networks with feature-wise linear modulation. In *International Conference on Machine Learning*, pages 1144–1152. PMLR.

Cheeger, J. (1970).

A lower bound for the smallest eigenvalue of the Laplacian. *Problems in Analysis*, 625(195-199):110.

Li, Q., Han, Z., and Wu, X.-M. (2018).

Deeper insights into graph convolutional networks for semi-supervised learning.

In Thirty-Second AAAI Conference on Artificial Intelligence.

Oono, K. and Suzuki, T. (2020).

Graph neural networks exponentially lose expressive power for node classification.

In International Conference on Learning Representations.