Fuzzy Alignments in Directed Acyclic Graph for Non-Autoregressive Machine Translation

Zhengrui Ma · Chenze Shao · Shangtong Gui · Min Zhang · Yang Feng

Natural Language Processing Group Key Laboratory of Intelligent Information Processing Institute of Computing Technology, Chinese Academy of Science

e Group

Non-autoregressive Translation

- Autoregressive generation
 - $P_{\theta}(y|x) = \prod_{i=1}^{M} P_{\theta}(y_i|x, y_{\leq i})$
- Non-autoregressive generation
 - Conditional independence assumption $P_{\theta}(y|x) = \prod_{i=1}^{M} P_{\theta}(y_i|x)$
 - Parallel generation: ≈ 13× speedup
- Performance degradation
 - Inaccurate length prediction
 - Token repetition and omission

Directed Acyclic Transformer

- Directed acyclic decoder
 - Vertices: tokens
 - Transitions: token dependency
 - SOTA NAT
- Distribution modeling
 - Consider all paths aligned with target (Γ_y)
 - $P_{\theta}(y|x) = \sum_{a \in \Gamma_y} P_{\theta}(y|a, x) P_{\theta}(a|x)$
- Problem in NLL training
 - Paths are treated differently!

•
$$\frac{\partial \mathcal{L}_{NLL}}{\partial \theta} = \sum_{a \in \Gamma_y} P_{\theta}(a|y,x) \frac{\partial \mathcal{L}_a}{\partial \theta}$$
, $\mathcal{L}_a = -\log P_{\theta}(y,a|x)$

• Translations in other modalities will be poorly calibrated!

(Image credits to Huang et al., 2022)

Treatment: Fuzzy Alignment Training

- From verbatim alignment to fuzzy alignment
- How to measure the alignment quality?
 - Sentence against Sentence: Clipped *n*-gram precision

• Path against Sentence: Expected *n*-gram precision of a path

$$p_n(\theta, a, y) = \mathbb{E}_{y' \sim P_\theta(y'|a, x)}[p_n(y', y)]$$

• Graph against Sentence: Average all the path

$$p_n(\theta, y) = \mathbb{E}_{a \sim P_\theta(a|x)}[p_n(\theta, a, y)]$$

Estimate Fuzzy Alignment

- Fuzzy alignment objective $p_n(\theta, y) = \mathbb{E}_{a \sim P_{\theta}(a|x)}[p_n(\theta, a, y)]$
- Impractical for training
 - Spaces of translations and paths both exponentially large!!!
- Approximation
 - Estimate the ratio of the clipped expected count of n-gram matching to expected number of n-grams

$$p'_{n}(\theta, \boldsymbol{y}) = \frac{\sum_{\boldsymbol{g} \in G_{n}(\boldsymbol{y})} \min(\mathbb{E}_{\boldsymbol{y}'}[C_{\boldsymbol{g}}(\boldsymbol{y}')], C_{\boldsymbol{g}}(\boldsymbol{y}))}{\mathbb{E}_{\boldsymbol{y}'}[\sum_{\boldsymbol{g} \in G_{n}(\boldsymbol{y}')} C_{\boldsymbol{g}}(\boldsymbol{y}')]}$$

Efficient Estimation

- Main challenge in optimizing $p'_n(\theta, y)$
 - Intractable $\mathbb{E}_{y'}[C_g(y')]$ and $\mathbb{E}_{y'}[\sum_{g \in G_n(y')} C_g(y')]$
- We find those terms
 - are connected with transition probabilities of a Markov chain (Eq. 17 & 18)
 - can be calculated with O(n + L) parallel operations (Alg. 1)
- $p'_n(\theta, y)$ is practical for training!

Experiments

- FA-DAT: Fuzzy-Aligned Directed Acyclic Transformer
 - Substantially improves translation quality
 - Further narrows the gap between AT and NAT
 - Sets new SOTA of NAT without knowledge distillation

Model		Iter.	Speedup	WMT14		WMT17	
				EN-DE	DE-EN	ZH-EN	EN-ZH
Transformer (Vaswani et al., 2017)		Ν	1.0×	27.6	31.4	23.7	34.3
Transformer [†]		Ν	$1.0 \times$	27.54	31.55	24.23	35.19
DA-Transformer [†]	+ Greedy	1	14.2×	26.07	30.69	22.35	33.58
	+ Lookahead	1	$14.0 \times$	26.56	30.81	22.65	33.62
	+ Joint-Viterbi	1	13.2×	26.89	31.09	23.17	33.25
FA-DAT	+ Greedy	1	14.2×	27.49**	31.36**	23.78**	33.97*
	+ Lookahead	1	$14.0 \times$	27.53**	31.37**	23.81**	34.02**
	+ Joint-Viterbi	1	13.2×	27.47**	31.44*	24.22**	34.49**

Thank you!

