DBQ-SSD: Dynamic Ball Query for Efficient 3D Object Detection

International Conference on Learning Representation (ICLR) May 1st – 5th, 2023

Jinrong Yang · Lin Song · Songtao Liu · Weixin Mao Zeming Li · Xiaoping Li · Hongbin Sun · Jian Sun · Nanning Zheng

Introduction

Background

Due to sparse, unordered, and semantically deficient of point cloud in autonomous driving, processing raw data is cumbersome and costly.

Figure from WOD

Introduction

Existing methods

• Employing the PointNet++ framework, many single-stage point-based 3D detectors are proposed to efficient process point cloud and extract informative point feature.

IA-SS

Motivation, analysis, insight

Our motivations

- Can we filter out redundancy of background point features?
- Can we also further drop redundance model?

Analysis and insights

- The MLP network occupies over half latency of overall model
- of the detector

• Existing methods focus on processing foreground point features (small proportion) more efficient.

• Tremendous spatial redundancy exists in background point features that appear in each stage

• The size of each object is varying, making it unusable to align each receptive field of the conventional multi-scale grouping (MSG) and suffering from branch redundancy in MSG

building on MLP network part [motivation 1] point feature fills zero

This work introduce Dynamic Ball Querying (DBQ) to replace the vanilla ball querying operation

Inference

• Query Multiplexer uses a light MLP network to predict gating masks for each group (scale),

• Each group can generate sparse activations to drop background point features [motivation 2] • Gating masks with positive values enable corresponding point feature to through corresponding groups. (3 cases: all activation, all blocking, or partial activation) [motivation 3] • Finally, remapping activation point features to dense form (like unpooling), in which blocking

• Non-differentiable of sparse selection: Gumbel-Sigmoid technique • The degree of sparse is data-driven • Interesting, the latency budget γ is set to 0 for avoiding parameter adjustment, so we only need to scale λ (control) the trade-off between effectiveness and efficiency)

This work introduce Dynamic Ball Querying (DBQ) to replace the vanilla ball querying operation

Iraining

• Introduce a latency constraint as a training target (budget loss) to achieve a balance between effectiveness and efficiency. We establish latency map Ψ for each group in each SA layer. $\Psi = \frac{\sum_{l} \sum_{k} \Psi_{l,k}(\sum_{i} \mathbf{m}^{l}(i,k)))}{\sum_{l} \sum_{k} \Psi_{l,k}(N_{q}^{l})}$ $\mathcal{L} = \mathcal{L}_{\text{tasks}} + \lambda \mathcal{L}_{\text{budget}}, \text{ where } \mathcal{L}_{\text{budget}} = |\Psi - \gamma|$

Evaluation on KITTI datasets

Method	Ţ
111001100	8

Mathad	There a	3D (Car (IoU=	=0.7)	3D P	ed. (IoU:	=0.5)	3D C	Cread				
Method	Type	Easy	Mod.	Hard	Easy	Mod.	Hard	Easy	Mod.	Hard	Speed		
Voxel-based Methods													
VoxelNet (Zhou & Tuzel, 2018)	1-stage	77.47	65.11	57.73	39.48	33.69	31.5	61.22	48.36	44.37	4.5		
SECOND (Yan et al., 2018)	1-stage	84.65	75.96	68.71	45.31	35.52	33.14	75.83	60.82	53.67	20		
PointPillars (Lang et al., 2019)	1-stage	82.58	74.31	68.99	51.45	41.92	38.89	77.10	58.65	51.92	42.4		
3D IoU Loss (Zhou et al., 2019)	1-stage	86.16	76.50	71.39	-	-	-	-	-	-	12.5		
Associate-3Ddet (Du et al., 2020)	1-stage	85.99	77.40	70.53	-	-	-	-	-	-	20		
SA-SSD He et al. (2020)	1-stage	88.75	79.79	74.16	-	-	-	-	-	-	25		
CIA-SSD (Zheng et al., 2020)	1-stage	89.59	80.28	72.87	-	-	-	-	-	-	32		
TANet Liu et al. (2020)	2-stage	84.39	75.94	68.82	53.72	44.34	40.49	75.70	59.44	52.53	28.5		
Part-A ²	2-stage	87.81	78.49	73.51	53.10	43.35	40.06	79.17	63.52	56.93	12.5		
Point-Voxel Methods													
Fast Point R-CNN Chen et al. (2019)	2-stage	89.29	77.40	70.24	-	-	-	-	-	-	16.7		
STD (Yang et al., 2019)	2-stage	87.95	79.71	75.09	53.29	42.47	38.35	78.69	61.59	55.30	12.5		
PV-RCNN (Shi et al., 2020a)	1-stage	90.25	81.43	76.82	52.17	43.29	40.29	78.60	63.71	57.65	12.5		
VIC-Net (Jiang et al., 2021)	1-stage	88.25	80.61	75.83	43.82	37.18	35.35	78.29	63.65	57.27	17		
HVPR (Noh et al., 2021)	1-stage	86.38	77.92	73.04	52.47	43.96	40.64	-	-	-	36.1		
		P	oint-base	ed Metho	ods								
PointRCNN (Shi et al., 2019)	2-stage	86.96	75.64	70.70	47.98	39.37	36.01	74.96	58.82	52.53	10		
3D IoU-Net (Li et al., 2020a)	2-stage	87.96	79.03	72.78	-	-	-	-	-	-	10		
Point-GNN (Shi & Rajkumar, 2020)	1-stage	88.33	79.47	72.29	51.92	43.77	40.14	78.60	63.48	57.08	1.6		
3DSSD (Yang et al., 2020b)	1-stage	88.36	79.57	74.55	54.64	44.27	40.23	82.48	64.10	56.90	25		
IA-SSD (Zhang et al., 2022)	1-stage	88.34	80.13	75.04	46.51	39.03	35.60	78.35	61.94	55.70	83		
IA-SSD (Reproduced)	1-stage	87.67	79.40	74.22	46.16	38.29	35.61	78.26	61.53	55.48	83		
DBQ-SSD	1-stage	87.93	79.39	74.40	47.59	38.08	35.61	78.18	62.80	55.70	162		

Mathad	Thursday	3D (Car (IoU=	=0.7)	3D P	ed. (IoU=	=0.5)	3D C	Cread				
Method	Type	Easy	Mod.	Hard	Easy	Mod.	Hard	Easy	Mod.	Hard	Speed		
Voxel-based Methods													
VoxelNet (Zhou & Tuzel, 2018)	1-stage	77.47	65.11	57.73	39.48	33.69	31.5	61.22	48.36	44.37	4.5		
SECOND (Yan et al., 2018)	1-stage	84.65	75.96	68.71	45.31	35.52	33.14	75.83	60.82	53.67	20		
PointPillars (Lang et al., 2019)	1-stage	82.58	74.31	68.99	51.45	41.92	38.89	77.10	58.65	51.92	42.4		
3D IoU Loss (Zhou et al., 2019)	1-stage	86.16	76.50	71.39	-	-	-	-	-	-	12.5		
Associate-3Ddet (Du et al., 2020)	1-stage	85.99	77.40	70.53	-	-	-	-	-	-	20		
SA-SSD He et al. (2020)	1-stage	88.75	79.79	74.16	-	-	-	-	-	-	25		
CIA-SSD (Zheng et al., 2020)	1-stage	89.59	80.28	72.87	-	-	-	-	-	-	32		
TANet Liu et al. (2020)	2-stage	84.39	75.94	68.82	53.72	44.34	40.49	75.70	59.44	52.53	28.5		
Part-A ²	2-stage	87.81	78.49	73.51	53.10	43.35	40.06	79.17	63.52	56.93	12.5		
Point-Voxel Methods													
Fast Point R-CNN Chen et al. (2019)	2-stage	89.29	77.40	70.24	-	-	-	-	-	-	16.7		
STD (Yang et al., 2019)	2-stage	87.95	79.71	75.09	53.29	42.47	38.35	78.69	61.59	55.30	12.5		
PV-RCNN (Shi et al., 2020a)	1-stage	90.25	81.43	76.82	52.17	43.29	40.29	78.60	63.71	57.65	12.5		
VIC-Net (Jiang et al., 2021)	1-stage	88.25	80.61	75.83	43.82	37.18	35.35	78.29	63.65	57.27	17		
HVPR (Noh et al., 2021)	1-stage	86.38	77.92	73.04	52.47	43.96	40.64	-	-	-	36.1		
		P	oint-base	ed Metho	ods								
PointRCNN (Shi et al., 2019)	2-stage	86.96	75.64	70.70	47.98	39.37	36.01	74.96	58.82	52.53	10		
3D IoU-Net (Li et al., 2020a)	2-stage	87.96	79.03	72.78	-	-	-	-	-	-	10		
Point-GNN (Shi & Rajkumar, 2020)	1-stage	88.33	79.47	72.29	51.92	43.77	40.14	78.60	63.48	57.08	1.6		
3DSSD (Yang et al., 2020b)	1-stage	88.36	79.57	74.55	54.64	44.27	40.23	82.48	64.10	56.90	25		
IA-SSD (Zhang et al., 2022)	1-stage	88.34	80.13	75.04	46.51	39.03	35.60	78.35	61.94	55.70	83		
IA-SSD (Reproduced)	1-stage	87.67	79.40	74.22	46.16	38.29	35.61	78.26	61.53	55.48	83		
DBQ-SSD	1-stage	87.93	79.39	74.40	47.59	38.08	35.61	78.18	62.80	55.70	162		

Mathad	Trues	3D Car (IoU=0.7)			3D P	ed. (IoU	=0.5)	3D C	Grand				
Method	Type	Easy	Mod.	Hard	Easy	Mod.	Hard	Easy	Mod.	Hard	Speed		
Voxel-based Methods													
VoxelNet (Zhou & Tuzel, 2018)	1-stage	77.47	65.11	57.73	39.48	33.69	31.5	61.22	48.36	44.37	4.5		
SECOND (Yan et al., 2018)	1-stage	84.65	75.96	68.71	45.31	35.52	33.14	75.83	60.82	53.67	20		
PointPillars (Lang et al., 2019)	1-stage	82.58	74.31	68.99	51.45	41.92	38.89	77.10	58.65	51.92	42.4		
3D IoU Loss (Zhou et al., 2019)	1-stage	86.16	76.50	71.39	-	-	-	-	-	-	12.5		
Associate-3Ddet (Du et al., 2020)	1-stage	85.99	77.40	70.53	-	-	-	-	-	-	20		
SA-SSD He et al. (2020)	1-stage	88.75	79.79	74.16	-	-	-	-	-	-	25		
CIA-SSD (Zheng et al., 2020)	1-stage	89.59	80.28	72.87	-	-	-	-	-	-	32		
TANet Liu et al. (2020)	2-stage	84.39	75.94	68.82	53.72	44.34	40.49	75.70	59.44	52.53	28.5		
Part-A ²	2-stage	87.81	78.49	73.51	53.10	43.35	40.06	79.17	63.52	56.93	12.5		
Point-Voxel Methods													
Fast Point R-CNN Chen et al. (2019)	2-stage	89.29	77.40	70.24	_	_	_	_	_	_	16.7		
STD (Yang et al., 2019)	2-stage	87.95	79.71	75.09	53.29	42.47	38.35	78.69	61.59	55.30	12.5		
PV-RCNN (Shi et al., 2020a)	1-stage	90.25	81.43	76.82	52.17	43.29	40.29	78.60	63.71	57.65	12.5		
VIC-Net (Jiang et al., 2021)	1-stage	88.25	80.61	75.83	43.82	37.18	35.35	78.29	63.65	57.27	17		
HVPR (Noh et al., 2021)	1-stage	86.38	77.92	73.04	52.47	43.96	40.64	-	-	-	36.1		
		I	Point-bas	ed Metho	ods								
PointRCNN (Shi et al., 2019)	2-stage	86.96	75.64	70.70	47.98	39.37	36.01	74.96	58.82	52.53	10		
3D IoU-Net (Li et al., 2020a)	2-stage	87.96	79.03	72.78	-	-	-	-	-	-	10		
Point-GNN (Shi & Rajkumar, 2020)	1-stage	88.33	79.47	72.29	51.92	43.77	40.14	78.60	63.48	57.08	1.6		
3DSSD (Yang et al., 2020b)	1-stage	88.36	79.57	74.55	54.64	44.27	40.23	82.48	64.10	56.90	25		
IA-SSD (Zhang et al., 2022)	1-stage	88.34	80.13	75.04	46.51	39.03	35.60	78.35	61.94	55.70	83		
IA-SSD (Reproduced)	1-stage	87.67	79.40	74.22	46.16	38.29	35.61	78.26	61.53	55.48	83		
DBQ-SSD	1-stage	87.93	79.39	74.40	47.59	38.08	35.61	78.18	62.80	55.70	162		

Evaluation on WOD, ONCE datasets

Table 3: Comparison with the state-of-the-art methods on the Waymo *val* set. The bold font is used to indicate best performance. The speed is tested on a single GPU with batch size of 16 and measured by FPS.

Method	Vehicle (mAP	LEVEL 1) mAPH	Vehicle (mAP	LEVEL 2) mAPH	Ped. (L mAP	EVEL 1) mAPH	Ped. (L mAP	EVEL 2) mAPH	Cyc. (L mAP	EVEL 1) mAPH	Cyc. (L mAP	EVEL 2) mAPH	speed
PointPollars (Lang et al., 2019)	60.67	59.79	52.78	52.01	43.49	23.51	37.32	20.17	35.94	28.34	34.60	27.29	-
SECOND (Yan et al., 2018)	68.03	67.44	59.57	59.04	61.14	50.33	53.00	43.56	54.66	53.31	52.67	51.37	-
Part-A ² (Shi et al., 2020b)	71.82	71.29	64.33	63.82	63.15	54.96	54.24	47.11	65.23	63.92	62.61	61.35	-
PV-RCNN (Shi et al., 2020a)	74.06	73.38	64.99	64.38	62.66	52.68	53.80	45.14	63.32	61.71	60.72	59.18	-
IA-SSD (Zhang et al., 2022)	70.53	69.67	61.55	60.80	69.38	58.47	60.30	50.73	67.67	65.30	64.98	62.71	14
Efficient Baseline	71.15	70.30	62.49	61.73	68.38	58.21	59.75	50.80	68.64	66.23	66.09	63.78	20
DBQ-SSD (λ =0.1)	70.56	69.82	61.81	61.15	68.89	58.07	60.15	50.60	66.58	63.98	64.22	61.66	30
DBQ-SSD (λ =0.05)	71.58	71.03	64.13	63.61	69.18	58.47	60.22	50.81	68.29	66.01	66.09	63.86	27

Table 6: Comparison with the state-of-the-art methods on the ONCE *val* set. Bold font is used to indicate the best performance. The speed is tested on a single GPU with batch size of 16 and measured by FPS.

Mathad	Vehicle					Pedes	strian	1		mAD	Smood			
Method	Overall	0-30m	30-50m	>50m	Overall	0-30m	30-50m	>50m	Overall	0-30m	30-50m	>50m	mAP	Speed
PointPollars	68.57	80.86	62.07	47.04	17.63	19.74	15.15	10.23	46.81	58.33	40.32	25.86	44.34	-
SECOND	71.19	84.04	63.02	47.25	26.44	29.33	24.05	18.05	58.04	69.96	52.43	34.61	51.89	-
PV-RCNN	77.77	89.39	72.55	58.64	23.50	25.61	22.84	17.27	59.37	71.66	52.58	36.17	53.55	-
PointRCNN	52.09	74.45	40.89	16.81	4.28	6.17	2.40	0.91	29.84	46.03	20.94	5.46	28.74	-
IA-SSD	70.30	83.01	62.84	47.01	39.82	47.45	32.75	18.99	62.17	73.78	56.31	39.53	57.43	14
IA-SSD (Reproduced)	70.48	84.16	63.77	49.27	38.22	44.14	33.10	20.41	61.90	73.94	55.44	38.37	56.87	14
DBQ-SSD (λ =0.05)	72.06	84.63	64.66	50.13	38.32	43.35	32.97	21.22	62.16	73.94	56.65	38.20	57.51	23
DBQ-SSD (λ =0.10)	72.14	84.81	64.27	50.22	37.83	43.88	32.18	20.29	62.99	75.13	56.65	38.91	57.65	24
DBQ-SSD (λ =0.20)	71.63	84.38	64.06	49.82	37.27	41.90	33.59	20.95	62.77	74.94	57.14	38.47	57.22	27
DBQ-SSD (λ =0.30)	70.66	83.28	63.66	48.88	37.46	42.35	32.94	22.21	62.51	74.46	56.65	38.01	56.88	33

Ablation study on KITTI datasets

(a) Performance & Latency

Layer index of set abstraction

(b) Layer ($\lambda = 0.1$)

Layer index of set abstraction

Layer index of set abstraction

Visualization on KITTI datasets

Visualization on WOD datasets

Thanks

https://github.com/yancie-yjr/DBQ-SSD

