Towards Addressing Label Skews in One-Shot Federated Learning

Yiqun Diao, Qinbin Li, Bingsheng He

https://github.com/Xtra-Computing/FedOV

Background

- Machine learning is data hungry
- Data are spread like islands
 - Data privacy regulations: no sharing raw data
- Federated learning (FL)
 - Only sharing model
 - Non-IID challenge
 - Our problem: label skews

Label skews

- Defintion: non-IID label distribution among different clients
 - E.g., disease types can differ among different hospitals
- Challenge:
 - Very different local optimas among clients
 - Prediction biased towards seen classes
 - NIID-Bench: label skews cause significant accuracy decay

Our prior benchmark work

https://github.com/Xtra-Computing/NIID-Bench

One-Shot FL: model uploaded only once

- Ensemble: majority voting!
 - Label skew: prediction biased to seen classes
 - Solution: introduce uncertainty! Open-set Recognition (OSR)
 - We use a recent OSR algorithm PROSER as a naive baseline

To generate more diverse outliers

- Data destruction (DD)
 - RandomCopyPaste
 - RandomSwap
 - RandomRotation
 - RandomErasing
 - GaussianBlur
 - RandomResizedCrop

- Adversarial Outlier Enhancement (AOE)
 - Generate outliers even closer to true samples
 - Adversarial learning:
 - Generated outliers x' from data destruction
 - Transform x' to x", s.t. the model classifies x" as inliers
 - Put x" into training with label "unknown"

(b) PROSER+DD

• FedOV achieves SOTA accuracy in a round under various label skews

Dataset	Partition	FedOV	Close-set voting	FedAvg	FedProx	FedNova	SCAFFOLD	FedDF	FedKT
CIFAR-10	#C = 1	40.0%±1.7%	$10.2\% \pm 0.2\%$	$10.5\%{\pm}1.0\%$	$10.6\% \pm 1.3\%$	$10.5\% \pm 1.0\%$	$10.5\%{\pm}1.0\%$	$10.2\% \pm 0.5\%$	9.8%±0.2%
	#C = 2	42.0%±2.4%	37.2%±2.5%	$11.1\%{\pm}1.9\%$	$10.9\%{\pm}1.6\%$	$10.5\%{\pm}0.7\%$	$11.1\%{\pm}1.8\%$	$18.8\%{\pm}1.1\%$	25.7%±2.9%
	#C = 3	55.6%±6.3%	43.2%±2.7%	$15.7\% \pm 5.1\%$	15.9%±5.3%	$14.5\% \pm 3.9\%$	$16.1\%{\pm}5.0\%$	$27.5\%{\pm}4.0\%$	$31.8\% \pm 2.5\%$
	$p_k \sim Dir(0.5)$	65.7%±0.7%	65.0%±0.1%	$18.4\% \pm 7.2\%$	$18.7\% \pm 5.3\%$	19.8%±7.2%	$18.6\% \pm 5.1\%$	$35.3\% \pm 0.9\%$	$42.1\%{\pm}2.5\%$
	$p_k \sim Dir(0.1)$	61.7%±1.1%	55.9%±1.3%	$10.4\% \pm 0.4\%$	$11.1\% \pm 0.9\%$	$13.1\% \pm 3.3\%$	13.0%±4.6%	26.3%±3.0%	35.0%±1.7%

• Both techniques (DD & AOE) are effective

Dataset	Partition	Close-set	Open-set (PROSER)	Open-set (PROSER + DD)	FedOV
	#C = 1	$10.2\% \pm 0.2\%$	$10.6\%{\pm}0.2\%$	$33.5\%{\pm}2.3\%$	40.0%±1.7%
	#C = 2	$37.2\% \pm 2.5\%$	$34.8\% \pm 4.5\%$	41.3%±7.7%	$42.0\%{\pm}2.4\%$
CIFAR-10	#C = 3	$43.2\% \pm 2.7\%$	$50.2\% \pm 4.7\%$	54.3%±2.1%	$55.6\% \pm 6.3\%$
	$p_k \sim Dir(0.5)$	$65.0\% \pm 0.1\%$	$66.6\% \pm 0.1\%$	67.6%±0.3%	$65.7\% \pm 0.7\%$
	$p_k \sim Dir(0.1)$	55.9%±1.3%	$58.0\% \pm 0.9\%$	$61.3\%{\pm}1.0\%$	$61.7\% \pm 1.1\%$

Conclusion

- Propose an one-shot FL algorithm: FedOV
 - Introducing uncertainty in prediction (OSR)
 - Generate diverse outliers during local training
- FedOV achieves SOTA accuracy in a round under various label skews

Follow our code!

https://github.com/Xtra-Computing/FedOV