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Machines use maps

Neural SLAM
LIDAR SLAM

Shakey the Robot, 1972
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DD-PPO, Wijmans et al, 2020 
EmbClip: Khandelwal et al, 2022 

Gato: Reed et al, 2022



Do AI agents learn to build maps in the course of learning to 
navigate?

• Would shed light on the internal workings of black box AI navigation agents 

• Recent results have shown high performance with ‘map-free’ navigators 

• In a manner similar to convergent evolution, it would imply that maps are a 
natural solution to navigation
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Convergent Evolution
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Similar to Honey Bee Waggle Dance

Video Credit: The Bee Group @ VT (https://www.freelyflyingbees.com/beegroupvt.html) 34
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• How can we be sure that the agent uses its map? 

• Similar to issues in animal navigation 

• Maybe landmark detection 

• Maybe smell 

• Maybe sun direction 

• Maybe the earth’s magnetic field
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Training

51



Training

• Training with generic on-policy RL (Proximal Policy Optimization) 

• Both architecture and training regime are generic
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Albeit not efficient

Effective navigators
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Wall following behavior

• Environments are 
unknown 

• Coordinate system is 
episodic 

• Learns a policy for 
navigation in unknown 
environments
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Known environment, global coordinates
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Memory is used to detect collisions
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Only for explanation

No gradients into agent

98% accuracy on held-out data
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Memory is used to detect collisions
t-SNE of top-10 collision prediction neurons

Forward — Collided

Forward — No Collision

Turn — No Collision
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Memory is used for mapping

• AI rendition of Menzel (1973)’s chimpanzee experiment
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Memory is task dependent
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Discussion: Limitations

• Real houses: 2D manifold and strong structural priors 

• Blind agents: Inconclusive results with sight. Conjecture that blind requires 
high-level solutions  

• Noiseless observations and actuations 

• Only examine agents with an implicit map-building mechanism 

• Deployment for a short period of time (order of minutes) 

• No mechanistic account nor complete account of all in memory
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Discussion: World Models

• Are world models emergent phenomena? 

• Or should we design them? 

• Do large language models (LLMs) have world models? 

• We show that mapping is an emergent phenomena 

• A map is a key component 

• and decodable
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Conclusion 
Emergence of Maps in the Memories of Blind Navigation Agents

Effective blind navigation is possible 
“Blind” (localization-only) navigation can be performed effectively, but not 
efficiently 

Enabled by memory and collision detection neurons 
These agents rely heavily on memory and collision detection neurons emerge 

Emergence of maps 
They use their memory to build a map of their environment 
 
Maps are task specific 
There is less detail about excursions
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