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‘ Tolman, 1948 oledo et al (2020) and Harten et al (2020)
COGNITIVE MAPS IN RATS AND MEN _ _ -
S i Bats navigate with cognitive maps
University of California
O'Keefe and Nadel, 1978 O'Keefe, Moser, and Moser, 2014

THE The Nobel Prize in Physiology or Medicine 2014

HIPPOCAMPUS Moser "for their discoveries of cells that constitute
AS A COGNITIVE MAP a positioning system in the brain"
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Animals build maps
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Shakey the Robot, 1972
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LIDAR SLAM

Shakey the Robot, 1972
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Machines use maps

Observation Predicted Map and Pose

Ground Truth

Neural SLAM

LIDAR SLAM

Shakey the Robot, 1972
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Do Al agents learn to build maps in the course of learning to
navigate?

» Would shed light on the internal workings of black box Al navigation agents

» Recent results have shown high performance with ‘map-free’ navigators

DD-PPO, Wijmans et al, 2020
EmbClip: Khandelwal et al, 2022
Gato: Reed et al, 2022 23



Do Al agents learn to build maps in the course of learning to
navigate?

» Would shed light on the internal workings of black box Al navigation agents

» Recent results have shown high performance with ‘map-free’ navigators

* |na manner similar to convergent evolution, it would imply that maps are a
natural solution to navigation
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Similar to Honey Bee Waggle Dance

Video Credit: The Bee Group @ VT (https://www.freelyflyingbees.com/beegroupvt.html) 34
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Causality

» How can we be sure that the agent uses its map?
» Similar to issues in animal navigation

» Maybe landmark detection

» Maybe smell

» Maybe sun direction

» Maybe the earth's magnetic field

47
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Training

raining with generic on-policy
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Both architecture and training regime are generic
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Fffective navigation with only egomotion sensing
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Fffective navigation with only egomotion sensing
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Fffective navigation with only egomotion sensing
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‘Bug” algorithms

Algorithmica (1987) 2: 403-430

Algorithmica

© 1987 Springer-Verlag New York Inc.

Path-Pl'anning Strategies for a Point Mobile Automaton
Moving Amidst Unknown Obstacles of Arbitrary Shape’

Vladimir J. Lumelsky” and Alexander A. Stepanov’

Fig. 4. Automaton’s path (dotted line) under Algorithm Bug2.
62
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Memory Is used to detect collisions

Only for explanation

No gradients into agent

—  Collision or Not

98% accuracy on held-out data
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Memory IS used to detect collisions

t-SNE of top-10 collision prediction neurons

Collision ® No Collision Previous Action ¢+ Forward
® Collided + Turn Right
« Turn Left

Forward — No Collision

/1
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Memory is used for mapping

» Al rendition of Menzel (1973)'s chimpanzee experiment
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Memory is used for mapping
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Decoding a map
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Memory IS task dependent
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Discussion: Limitations

Real houses: 2D manifold and strong structural priors

Blind agents: Inconclusive results with sight. Conjecture that blind requires
high-level solutions

Noiseless observations and actuations
Only examine agents with an implicit map-building mechanism
Deployment for a short period of time (order of minutes)

No mechanistic account nor complete account of all in memory
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Discussion: World Models

Are world models emergent phenomena?

Or should we design them?

Do large language models (LLMs) have world models?

We show that mapping is an emergent phenomena
» A map is akey component

e and decodable

17T



COnClUSiOﬂ Poster: #106

Emergence of Maps in the Memories of Blind Navigation Agents

Effective blind navigation is possible
‘Blind” (localization-only) navigation can be performed effectively, but not

efficiently

Enabled by memory and collision detection neurons
hese agents rely heavily on memory and collision detection neurons emerge

Emergence of maps
They use their memory to build a map of their environment

Maps are task specific
There is less detail about excursions

112



