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Figure 1: Performance on the Atari.

The efficacy of reinforcement learning (RL) algorithms in practical applications is heavily reliant on
their sampling efficiency.

Achieving optimal performance with limited data samples is a challenging task, and only a handful of
algorithms can achieve both high sample efficiency and superior final performance.

While some RL models have demonstrated remarkable results in specific tasks, the claim of
surpassing human-level performance is often exaggerated and misleading. Despite recent
advancements in RL, the strongest algorithms still fall short of outperforming human world records on
a multitude of tasks.
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1. Reduce the amount of training data by current SOTA reinforcement learning algorithms by more than
20-100 times.

2. In the case of reduced data sample size, maintain or even surpass SOTA performance, and even
surpasses the original performance.

3. Break all human world records and obtain real super-numan agents in Atari.



Why do we need behavior control?
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Figure 2: Data Distribution Optimization [1]

[1] Fan, Jiajun, and Changnan Xiao. "Generalized Data Distribution Iteration." International Conference on Machine Learning. PMLR, 2022.



Why do we need behavior control?

Theorem 1 (First-Order Optimization with Superior
Target). Under assumptions (1) (2) (3), we have

Lr(PYTV,004) = B, pem[Lr(L0ST) >
E/\pr) L7, Bf\t+1))] _ LT(P,(\t), gt+1)),

‘ If we use better data for training,

Theorem 2 (Second-Order Optimization with Su- can we obtain better Y erformance?
perior Improvement). Under  assumptions (1) Yes /

(2) (4), we have EApr/(\tH)[GnET()\ae,(\t+1))] >

E)\N,PI(\t) [G" LT (), 0§\t+1))], more specifically,
E)\N'PI(\t+1) [‘CT()‘a 05\t+1),n) - 'C'T()‘a 05\t+1))]

> E)\N’P/(\t) [‘CT()\, 9§t+1),77) . ﬁT()\, 9§t+1))]

Better Data facilitate Better RL training!
But How? -> LBC



Behavior Control Formulation

Definition 3.1 (Behavior Space Construction). Considering the RL problem that behaviors | are
generated from some policy model(s). We can acquire a family of realizable behaviors by applying a

family of behavior mappings Fg to these policy model(s). Define the set that contains all of these
realizable behaviors as the behavior space, which can be formulated as:

M _ J{reny = Fyp(Pn)|@ € ®,h € H,vp € ¥}, for individual behavior mapping
SUELE {reny = Fyp(Peu)|ly € ¥}, for hybrid behavior mapping
(2)
1 Assumption 1
M _ [{pny = Fyp(®n)h € H,¢p € ¥}, for individual behavior mapping @)
H¥ {14 = Fop(Pu)|tp € ¥}, for hybrid behavior mapping

Definition 3.2 (Behavior Selection). Behavior selection can be formulated as finding a optimal selec-
tion distribution Py .  to select the behaviors p from behavior space Me u,w and maximizing

some optimization target Lp, wherein Lp is the optimization target of behavior selection:

* O —
PMo e = argmax Lp 3)
Mo H,¥

1 Assumption 1

Priy o = argmaxLp

My, w



Behavior Control Method

M | {pnyp = Fy(Pn)lh € H,9p € ¥}, for individual behavior mapping P 1
= {rn,» = Fy(®Pu)|yp € ¥},  for hybrid behavior mapping rop.

Behavior Control ———

{h,yp = Fy(Pn)/h € H,¢ € ¥}, for individual behavior mapping

VHE = {{MH,¢ = Fy(®nu)|tp € ¥}, for hybrid behavior mapping PrOp. 2

Proposition 1 (Policy Model Selection). When Fy, is a deterministic and individual behavior
mapping for each actor at each training step (wall-clock), e.g., Agent57, the behavior for each actor
can be uniquely indexed by h, so equation|3 can be simplified into

Lp =Ennpy [V, +¢ V"], (©6)

where Py is a selection distribution of h € H = {hy,...,hx}. For each actor, the behavior is
generated from a selected policy model ®y,; with a pre-defined behavior mapping F.

Agent57, NGU

Proposition 2 (Behavior Mapping Optimization). When all the policy models are used to generate
each behavior, e.g., pyy, = Fy(Po n) for single policy model cases or iy = Fop(Po, by -y Poy by )
for N policy models cases, each behavior can be uniquely indexed by Fy,, and equation|§ can be
simplified into:

Lp =Eyurpy |V +c-VIP|, (7)
where Pyg is a selection distribution of 1 € W.

LBC (Ours)



Hybrid Behavior Mapping

1. Generalized Policy Selection. Adjusting the contribution proportion of
each learned policy for the behavior via an importance weight

2. Policy-Wise Entropy Control. Controlling the entropy of each policy via
an entropy control function f.

3. Behavior Distillation from Multiple Policies. Distilling the entropy-
controlled policies into a behavior policy according to the proportion of
contribution and a behavior distillation function g.

Miu,o= {9(fr,(®hy);s - (Bhay) 1, - -+ o) [ € T}

To control the behavior, the only thing we have to do is to optimize ¢ =
(11, w1 ... Ty, Wy) € ¥ with a meta-controller since f, g, N, H are
predefined.



Framework
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Figure 3: A general framework of LBC.



Experiment
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Figure 4: Performance on the 57 Atari.
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Figure 5: Atari Learning Curve



Experiment

Human Normalized Score on Atari-57 Games
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Figure 6: Comparison with Muzero. Human-normalized scores per
game at different interaction budgets, sorted from highest to lowest.
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Conclusion and Research Map

Behavioral Control in RL

1. GDI: Theoretical Guarantee. Behavioral control in single policy RL. (Done)
2. LBC: General way. Behavior control in population-based RL. (Done)

3. Multi-Game LBC: Behavior control in Multi-Task RL. (In progress)

4. Robo BC: Behavior control in Robotics. (In progress)

What’s Next?
Can We Unify the Behavior Control in RL? Yes!



Thank you for your
listening!

Contact: fanjj21@mails.tsinghua.edu.cn

Blogs: Ibc.jiajunfan.com
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