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UDA and SFDA

Unsupervised Domain Adaptation (UDA)
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Source-Free Domain Adaptation (SFDA)
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𝑖
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𝑖=1
⇓ Source Training
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)}𝑀

𝑖=1

⇓ Target Adaptation
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(a) Clipart: Clipart Images (b) Real World: Regular Images captured with a Camera

Figure 1: Examples of Office-Home Dataset 1: 𝑝𝑠 (𝑋,𝑌 ) ≠ 𝑝𝑇 (𝑋,𝑌 )

1
Source: Venkateswara et al., Deep Hashing Network for Unsupervised Domain Adaptation. CVPR 2017.
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Label Noise in SFDA

𝐷𝑆 = { (x𝑆
𝑖
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𝑖
) }𝑁

𝑖=1
⇓ Source Training

𝑓𝑆 (x) + 𝐷𝑇 = { (x𝑇
𝑖
) }𝑀

𝑖=1

⇓ Target Adaptation

𝑓𝑇 (x)

Two-Stage Training process:
Source Training ⇒ Target Adaptation

Key Point: Quality of the Pseudo-Labels
Domain Shift ⇒ Severe Noise in Pseudo Labels
Incorrect Neighborhood/Cluster Information
⇒ Noise Accumulation (Fig2)
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Figure 2: Neighbors Label Noise in
SFDA Problem
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⇓
Incorrectly Assigned Pseudo Labels = Noisy Labels

We propose to formulate SFDA as a Learning with Label Noise (LLN) problem.
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LLN

Learning with Label Noise (LLN)

Given a set of NOISY training data 𝑆

𝑆 = (xi, 𝑦𝑖)𝑛𝑖=1
xi: input data
𝑦𝑖 : possibly corrupted label
𝑦𝑖 : ground-truth label

To learn a Noise-Robust classifier
⇒ correctly label the new input data.

Figure 3: Example of Learning with Label Noise on
Office-Home Dataset. The first row represents the
ground-truth label; the second row is the possibly
corrupted label.
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Current Limitations of LLN methods in SFDA

Different Label Noises in LLN and in SFDA Settings

Label Noise in LLN (Xiao et al., 2015):

generated by human annotators or image search engines
mislabeling rate for a sample is bounded
general LLN methods: Noise-Robust Losses

Label Noise in SFDA:

generated by the source model due to the distribution shift
mislabeling rate can be out of control and unbounded

TWO PROBLEMS for correctly applying LLN approaches to SFDA:

1 Can general noise-robust LLN methods, based on the Bounded Noise, be effective for
SFDA problems where the label noise has different properties?

2 If NOT, what kinds of LLN methods can be helpful?
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Unbounded Label Noise in SFDA
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Theoretical Analysis 1 - Unbounded Label Noise in Source Free Domain Adaptation

Definition: Bounded and Unbounded Label Noises

With 𝑋 as the input feature, 𝑌 as the ground-truth label, and 𝑌 as the noisy label,
we define the Bounded Label Noise scenario as:

Pr
[
𝑌 = 𝑖 |𝑌 = 𝑖, 𝑋 = x

]
> Pr

[
𝑌 = 𝑗 |𝑌 = 𝑖, 𝑋 = x

]
, ∀x ∈ X, 𝑖 ≠ 𝑗

, and the Unbounded Label Noise scenario as:

Pr
[
𝑌 = 𝑗 |𝑌 = 𝑖, 𝑋 = x

]
→ 1, ∃S ⊂ X, ∀x ∈ S, 𝑖 ≠ 𝑗

Bounded: A sample x has the highest probability of being in the correct class (𝑖)

Unbounded: Mislabeling rate of a sample 𝑥 can be very high.

Existence of Unbounded Label Noise In SFDA (Th 3.1)

Under some mild assumptions, there exists a non-empty region R ⊂ X, for (x, 𝑦) ∼ D𝑇 , if x ∈ R, then

Pr[ 𝑓𝑆 (x) ≠ 𝑦 ] ≥ 1 − 𝛿,

where 𝛿 ∈ (0, 1) (i.e., 𝛿 = 0.01), 𝑓𝑆 is the optimal source classifier.
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Pr[ 𝑓𝑆 (x) ≠ 𝑦 ] ≥ 1 − 𝛿,

where 𝛿 ∈ (0, 1) (i.e., 𝛿 = 0.01), 𝑓𝑆 is the optimal source classifier.

Theorem 3.1: Due to the Domain Shift, Unbounded Label Noise exists in SFDA.
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Theoretical Analysis 1 - Unbounded Label Noise in Source Free Domain Adaptation

Unsuitable LLN Losses for Unbounded Label Noise (Lemma 3.2)

Given a bounded noise-robust loss ℓLLN and an input sample x, we have:

Pr
[
𝑓★
𝑇
(x) ≠ 𝑓★

𝑇
(x)

]
≥ 1 − 𝛿,∀x ∈ R

where 𝑓★
𝑇

and 𝑓★
𝑇

are the global minimizers of 𝑅( 𝑓𝑇 ) and 𝑅( 𝑓𝑇 ), the risks of the function 𝑓𝑇 under
clean data and unbounded noisy data, respectively.

Lemma 3.2: many existing Noise-Robust Loss based LLN methods, which rely on the
Bounded Label Noise assumption, are NOT the most suitable solutions for SFDA.

TWO PROBLEMS for correctly applying LLN approaches to SFDA:

1 Can general noise-robust LLN methods, based on the Bounded Noise, be effective for SFDA
problems where the label noise has different properties? ⇒ NO

2 If NOT, what kinds of LLN methods can be helpful?
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Early-Time Training Phenomenon in SFDA
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Theoretical Analysis 2 - Early-time Training Phenomenon (ETP) exists in Unbounded Label Noise Scenario

ETP - Early-time Training Phenomenon

The Early-time Training Phenomenon describes the training dynamics of the classifier that
preferentially fits the clean samples and therefore has higher prediction accuracy for mislabeled
samples during the early-training stage. (Liu et al., 2020)

Existence of ETP in SFDA (Th 4.1)

In the Unbounded Label Noise scenario, given a set of mislabeled samples, 𝐵 = {(x, 𝑦)}, and a
classifier 𝜃, there exists a proper time 𝑇 , and a constant 𝑐0 such that for any 0 < 𝜎 < 𝑐0, the
prediction accuracy κ(𝐵; 𝜃𝑇 ) can satisfy the following inequality with probability 1 − 𝑜𝑝 (1):

𝜅(𝐵; 𝜃𝑇 ) ≥ 1 − exp{− 1
200𝑔(𝜎)

2},

where 𝑔(𝜎) is a monotone decreasing function with 𝑔(𝜎) → ∞ (𝜎 → 0), and 𝜎 is the cluster variance.

⇒ In SFDA,

the Early Adaptation Phase is critical;

the Early-Time Predictions for some easily mislabeled data could be more promising.
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Method

Early Learning Regularization (ELR) Term (Liu et al., 2020)

LELR (𝜃𝑡 ) = log
(
1 − 𝑦⊤𝑡 𝑓 (x; 𝜃𝑡 )

)
where 𝑓 (x; 𝜃𝑡 ) is the probabilistic output for the sample x, and 𝑦𝑡 = 𝛽𝑦𝑡−1 + (1 − 𝛽) 𝑓 (x; 𝜃𝑡 ) is the moving
average prediction for x.

Final Method Proposed in SFDA

Given any SFDA objective function LSFDA, the overall objective function is given by:

L = LSFDA + 𝜆LELR,

Gradient Analysis in SFDA

dLELR (𝜃𝑡 )
d 𝑓 (x;𝜃𝑡 ) = − 𝑦𝑡

1−𝑦⊤𝑡 𝑓 (x;𝜃𝑡 )

LELR ↓ ⇒ | dLELR (𝜃𝑡 )
d 𝑓 (x;𝜃𝑡 ) | ↑ ⇒ LELR dominates param updating

⇒ Enforce the alignment of 𝑓 (x; 𝜃𝑡 ) with 𝑦𝑡 rather than noisy labels
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Experimental Results
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Observation of Performance Drop

Figure 4: Performance Drop of LLN methods in Adaptation process (VisDA, DomainNet, Office-31)

Figure 5: Performance Drop of SFDA methods in Adaptation process (Office-Home)
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Main Experimental Results

Office-Home

VisDA-2017

DomainNet

Figure 6: Accuracies (%) on Office-Home for ResNet50-based methods
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Main Experimental Results

Office-Home

VisDA-2017

DomainNet

Figure 6: Accuracies (%) on VisDA-C (Synthesis → Real) for ResNet101-based methods
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Main Experimental Results

Office-Home

VisDA-2017

DomainNet

Figure 6: Accuracies (%) on DomainNet for ResNet50-based methods
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Summary

In this work, we
1 Distinguish Label Noises in SFDA from Traditional LLN Settings;

2 Justify the existence of ETP in Unbound Label Noise;

3 Identify effective LLN methods for SFDA;

4 Introduce the ELR term to enhance SFDA performance.

We hope this work can INSPIRE more research on

Exploring the Training Dynamic of Early-Time Adaptation

and Utilizing the Early-Time Training Phenomenon in Unbounded Label Noise.
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