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- Transfer Learning
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- Transfer Learning

Train on training task
> Classification (supervised)

Model

> Self-supervised learning

Use for many transfer tasks
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- Training vs Transfer performance
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- Training vs Transfer performance
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- Training vs Transfer performance
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SupCon (Khosla et al., 2020)
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- Training vs Transfer performance
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- Training vs Transfer performance
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- Training vs Transfer performance
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- An improved training setup for supervised learning
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- An improved training setup for supervised learning
_ local crops \

ResNet50

fo
/

1. Multi-crop data augmentation (Caron et al., 2020)



- An improved training setup for supervised learning

ResNet50
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1. Multi-crop data augmentation _ _
Multiple random crops per image

e Global crops @ 224 x 224
e Localcrops @ 96 x 96



- An improved training setup for supervised learning
_ local crops \
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1. Multi-crop data augmentation

2. Expendable projector head (Chen et al., 2020, Wang et al., 2022)



- An improved training setup for supervised learning

2. Expendable projector head
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- An improved training setup for supervised learning

global crop

local crops \
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1. Multi-crop data augmentation

2. Expendable projector head

3. Cosine cross entropy loss (Kornblith et al.,, 2021)



- The loss function

Cosine cross entropy loss
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- The loss function

Cosine cross entropy loss

+ sum over all global & local crops




- The loss function

Cosine cross entropy loss
+ sum over all global & local crops

+ projector head g¢
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- An improved training setup for supervised learning

Changes over the basic supervised learning setup:
1.  Multi-crop data augmentation
2. Expendable projector head

3. Cosine cross entropy loss
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- An improved training setup for supervised learning

Changes over the basic supervised learning setup:
1.  Multi-crop data augmentation
Expendable projector head

Cosine cross entropy loss

howWN

(optional) Replace class weights with class prototypes
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- Revisiting Nearest Class Means

Nearest Class Means (NCM)
(Mensink et al. 2012, Guerriero et al. 2018):

Replace the learnable class weights
with class means

dataset
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- Online Class Means

Online Class Means (OCM)

Replace the learnable class weights
with class means

computed over a memory bank

with features from a Momentum Encoder
(He et al., 2020)

h || memory bank
|
= IIHHIIII]HIIIHIHIIH o
[ eeeeeeeessssooeeea l
fa ema fg




- Experimental Setup

Train on ImageNet-1K
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- Experimental Setup

Train on ImageNet-1K
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- Evaluation Protocol

Training task: results on the ImageNet dataset
Transfer tasks: A unifique transfer performance metric - aggregates 13 datasets

“Log-odds” score averaged over

e 8small fine-grained classification datasets
Aircraft, Cars, DTD, EuroSAT, Flowers, Pets, Food101, SUN397

e 5 concept generalization benchmarks: ImageNet-CoG (Sariyildiz et al., 2021)
CoG-L1, CoG-L2, CoG-L3, CoG-L4, CoG-L5



- Impact of the projector

Observation 1
Projector depth controls the trade-off between Training & Transfer accuracy
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- Impact of the projector

Observation 1
Projector depth controls the trade-off between Training & Transfer accuracy
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- Impact of the projector

Observation 2
Projector also has an impact on the representations

Average coding length of representations and singular values
(computed over all transfer datasets)
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- Impact of OCM

Observation 3
OCM decreases overfitting:
The prototypes change more than the learned weights

|K
E 00| — =
Z
=
§ 1072 He Prototypes AU N
Lg @ Weights AW
10—4 | . —
0 o0 100 epochs

Change in class weights W and
prototypes U at every iteration



- Comparison to the state of the art
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- Comparison to the state of the art

Mean Transfer Acc. (Log odds)
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- Comparison to the state of the art

Mean Transfer Acc. (Log odds)
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- Comparison to the state of the art

Mean Transfer Acc. (Log odds)
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- Comparison to the state of the art

Mean Transfer Acc. (Log odds)
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- Conclusions

No reason for no supervision!

e Our t-Rex models are state of the art for transfer ‘despite’ being supervised
o Multi-crop
o Expendable projector
o Cosine Cross Entropy loss
o (optional) Online Class Means

e Training / Transfer trade-off controlled via projector design %

e t-ReX and t-ReX* ResNet50 models are available!

Code and pretrained models
https://europe.naverlabs.com/t-rex



