Accepted Papers (Conference Track)
Oral Presentations
- Neural Programmer-Interpreters
Scott Reed, Nando de Freitas - Regularizing RNNs by Stabilizing Activations
David Krueger, Roland Memisevic - BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies [code]
Shihao Ji, Swaminathan Vishwanathan, Nadathur Satish, Michael Anderson, Pradeep Dubey - The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations
Felix Hill, Antoine Bordes, Sumit Chopra, Jason Weston - Towards Universal Paraphrastic Sentence Embeddings [code]
John Wieting, Mohit Bansal, Kevin Gimpel, Karen Livescu - Convergent Learning: Do different neural networks learn the same representations?
Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, John Hopcroft - Net2Net: Accelerating Learning via Knowledge Transfer
Tianqi Chen, Ian Goodfellow, Jon Shlens - Variational Gaussian Process
Dustin Tran, Rajesh Ranganath, David Blei - The Variational Fair Autoencoder
Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, Richard Zemel - A note on the evaluation of generative models
Lucas Theis, Aäron van den Oord, Matthias Bethge - Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han, Huizi Mao, Bill Dally - Neural Networks with Few Multiplications
Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, Yoshua Bengio - Order-Embeddings of Images and Language [code]
Ivan Vendrov, Ryan Kiros, Sanja Fidler, Raquel Urtasun - Generating Images from Captions with Attention
Elman Mansimov, Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov - Density Modeling of Images using a Generalized Normalization Transformation
Johannes Ballé, Valero Laparra, Eero Simoncelli
Poster Presentations
- Multi-Scale Context Aggregation by Dilated Convolutions
Fisher Yu, Vladlen Koltun - Learning to Diagnose with LSTM Recurrent Neural Networks
Zachary Lipton, David Kale, Charles Elkan, Randall Wetzel - Prioritized Experience Replay
Tom Schaul, John Quan, Ioannis Antonoglou, David Silver - Importance Weighted Autoencoders
Yuri Burda, Ruslan Salakhutdinov, Roger Grosse - Variationally Auto-Encoded Deep Gaussian Processes
Zhenwen Dai, Andreas Damianou, Javier Gonzalez, Neil Lawrence - Training Convolutional Neural Networks with Low-rank Filters for Efficient Image Classification
Yani Ioannou, Duncan Robertson, Jamie Shotton, roberto Cipolla, Antonio Criminisi, Jamie Shotton - Reducing Overfitting in Deep Networks by Decorrelating Representations
Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick, Dhruv Batra - Pushing the Boundaries of Boundary Detection using Deep Learning
Iasonas Kokkinos - Reasoning about Entailment with Neural Attention
Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiský, Phil Blunsom - Convolutional Neural Networks With Low-rank Regularization
Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, Weinan E - Unifying distillation and privileged information
David Lopez-Paz, Leon Bottou, Bernhard Schölkopf, Vladimir Vapnik - Particular object retrieval with integral max-pooling of CNN activations [code]
Giorgos Tolias, Ronan Sicre, Hervé Jégou - Bayesian Representation Learning with Oracle Constraints
Theofanis Karaletsos, Serge Belongie, Gunnar Rätsch - Neural Programmer: Inducing Latent Programs with Gradient Descent
Arvind Neelakantan, Quoc Le, Ilya Sutskever - SparkNet: Training Deep Networks in Spark
Philipp Moritz, Robert Nishihara, Ion Stoica, Michael Jordan - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
Jost Tobias Springenberg - MuProp: Unbiased Backpropagation For Stochastic Neural Networks
Shixiang Gu, Sergey Levine, Ilya Sutskever, Andriy Mnih - Data Representation and Compression Using Linear-Programming Approximations
Hristo Paskov, John Mitchell, Trevor Hastie - Diversity Networks
Zelda Mariet, Suvrit Sra - Deep Reinforcement Learning in Parameterized Action Space [code] [data]
Matthew Hausknecht, Peter Stone - Learning VIsual Predictive Models of Physics for Playing Billiards
Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, Jitendra Malik - Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks [code] [data]
Jason Weston, Antoine Bordes, Sumit Chopra, Sasha Rush, Bart van Merrienboer, Armand Joulin, Tomas Mikolov - Evaluating Prerequisite Qualities for Learning End-to-end Dialog Systems [data]
Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine Bordes, Sumit Chopra, Alexander Miller, Arthur Szlam, Jason Weston - Better Computer Go Player with Neural Network and Long-term Prediction
Yuandong Tian, Yan Zhu - Distributional Smoothing with Virtual Adversarial Training [code]
Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, Shin Ishii - Multi-task Sequence to Sequence Learning
Minh-Thang Luong, Quoc Le, Ilya Sutskever, Oriol Vinyals, Lukasz Kaiser - A Test of Relative Similarity for Model Selection in Generative Models
Eugene Belilovsky, Wacha Bounliphone, Matthew Blaschko, Ioannis Antonoglou, Arthur Gretton - Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications
Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, Dongjun Shin - Session-based recommendations with recurrent neural networks [code]
Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, Domonkos Tikk - Continuous control with deep reinforcement learning
Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra - Recurrent Gaussian Processes
César Lincoln Mattos, Zhenwen Dai, Andreas Damianou, Jeremy Forth, Guilherme Barreto, Neil Lawrence - Modeling Visual Representations:Defining Properties and Deep Approximations
Stefano Soatto, Alessandro Chiuso - Auxiliary Image Regularization for Deep CNNs with Noisy Labels
Samaneh Azadi, Jiashi Feng, Stefanie Jegelka, Trevor Darrell - Policy Distillation
Andrei Rusu, Sergio Gomez, Caglar Gulcehre, Guillaume Desjardins, James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, Raia Hadsell - Neural Random-Access Machines
Karol Kurach, Marcin Andrychowicz, Ilya Sutskever - Gated Graph Sequence Neural Networks
Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel, CIFAR - Metric Learning with Adaptive Density Discrimination
Oren Rippel, Manohar Paluri, Piotr Dollar, Lubomir Bourdev - Censoring Representations with an Adversary
Harrison Edwards, Amos Storkey - Variable Rate Image Compression with Recurrent Neural Networks
George Toderici, Sean O'Malley, Damien Vincent, Sung Jin Hwang, Michele Covell, Shumeet Baluja, Rahul Sukthankar, David Minnen - Delving Deeper into Convolutional Networks for Learning Video Representations
Nicolas Ballas, Li Yao, Pal Chris, Aaron Courville - Data-dependent initializations of Convolutional Neural Networks [code]
Philipp Kraehenbuehl, Carl Doersch, Jeff Donahue, Trevor Darrell - Order Matters: Sequence to sequence for sets
Oriol Vinyals, Samy Bengio, Manjunath Kudlur - High-Dimensional Continuous Control Using Generalized Advantage Estimation
John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, Pieter Abbeel - Deep Multi Scale Video Prediction Beyond Mean Square Error
Michael Mathieu, camille couprie, Yann Lecun - Grid Long Short-Term Memory
Nal Kalchbrenner, Alex Graves, Ivo Danihelka - Predicting distributions with Linearizing Belief Networks
Yann Dauphin, David Grangier - Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter - Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning
Emilio Parisotto, Jimmy Ba, Ruslan Salakhutdinov - Segmental Recurrent Neural Networks
Lingpeng Kong, Chris Dyer, Noah Smith - Large-Scale Approximate Kernel Canonical Correlation Analysis
Weiran Wang, Karen Livescu - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford, Luke Metz, Soumith Chintala - Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks [code]
Pouya Bashivan, Irina Rish, Mohammed Yeasin, Noel Codella - Digging Deep into the layers of CNNs: In Search of How CNNs Achieve View Invariance
Amr Bakry, Mohamed Elhoseiny, Tarek El-Gaaly, Ahmed Elgammal - An Exploration of Softmax Alternatives Belonging to the Spherical Loss Family
Alexandre De Brébisson, Pascal Vincent - Data-Dependent Path Normalization in Neural Networks
Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, Nathan Srebro - Reasoning in Vector Space: An Exploratory Study of Question Answering
Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng Gao, Li Deng, Paul Smolensky - ACDC: A Structured Efficient Linear Layer
Marcin Moczulski, Misha Denil, Jeremy Appleyard, Nando de Freitas - Adversarial Manipulation of Deep Representations [code]
Sara Sabour, Yanshuai Cao, Fartash Faghri, David Fleet - Geodesics of learned representations
Olivier Hénaff, Eero Simoncelli - Sequence Level Training with Recurrent Neural Networks
Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba - Super-resolution with deep convolutional sufficient statistics
Joan Bruna, Pablo Sprechmann, Yann Lecun