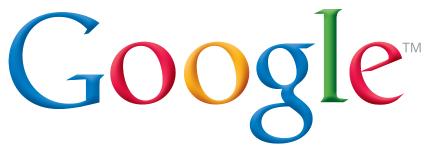
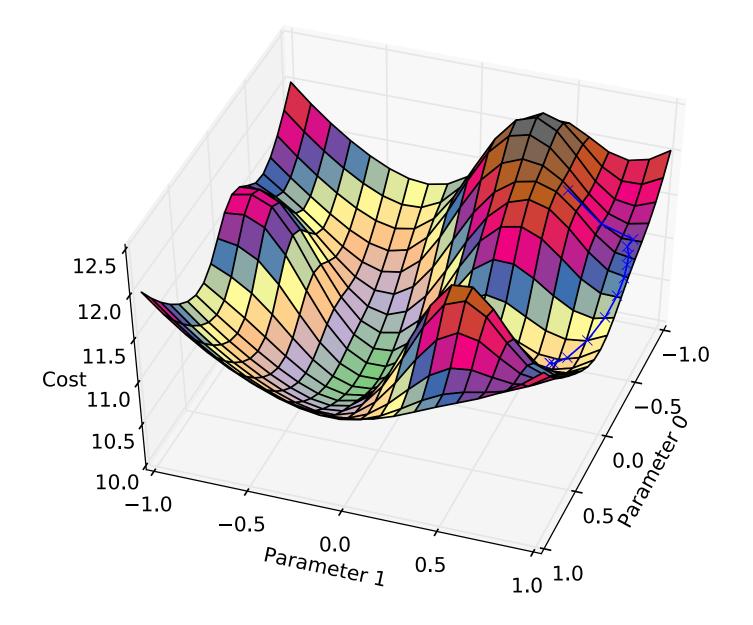
Qualitatively Characterizing Neural Network Optimization Problems

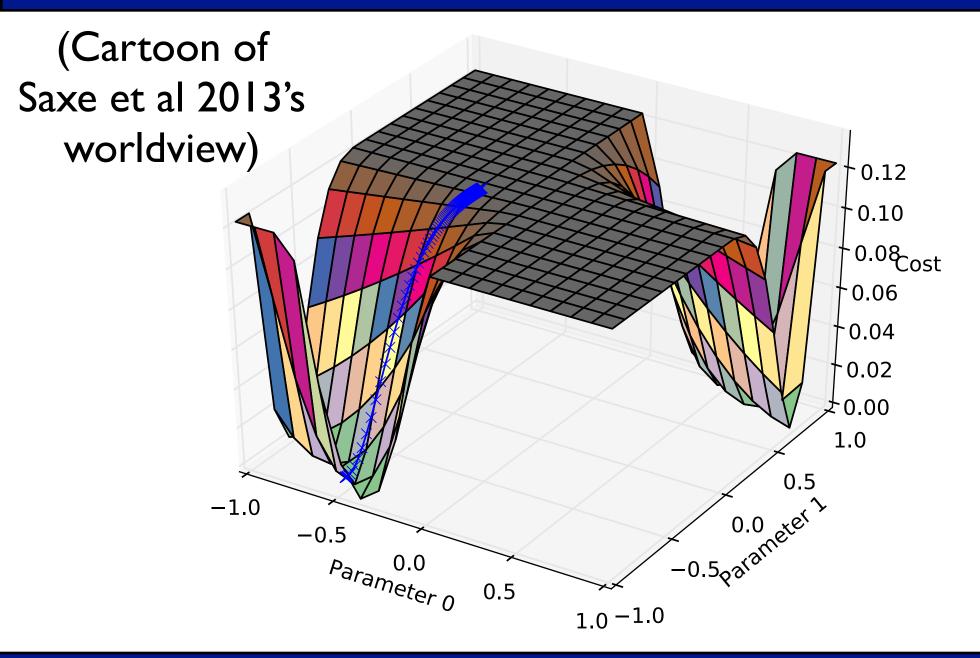
Andrew Saxe



Traditional view of NN training

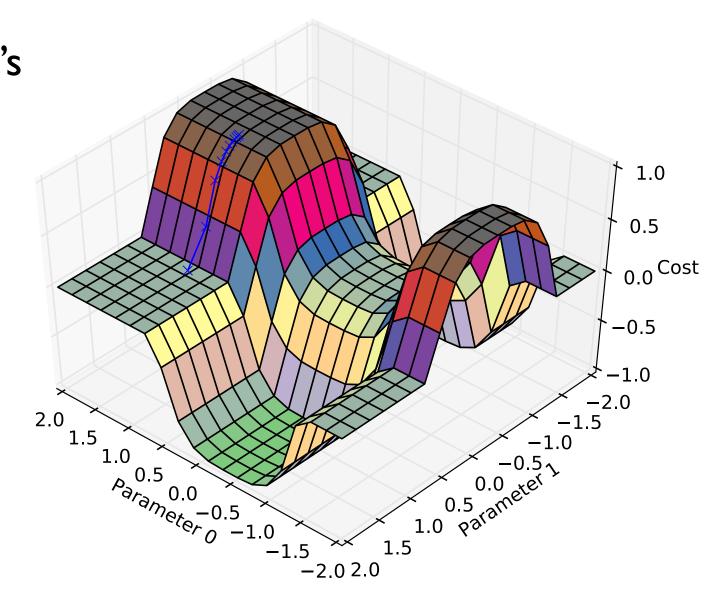


Factored linear view



Attractive saddle point view

(Cartoon of Dauphin et al 2014's worldview)



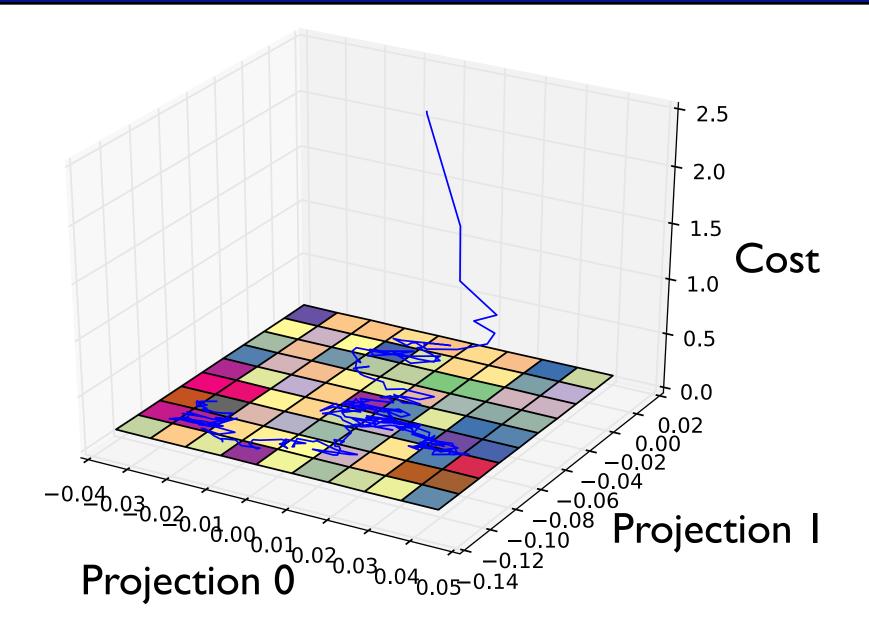
Questions

- Does SGD get stuck in local minima?
- Does SGD get stuck on saddle points?
- Does SGD wind around numerous bumpy obstacles?
- Does SGD thread a twisting canyon?

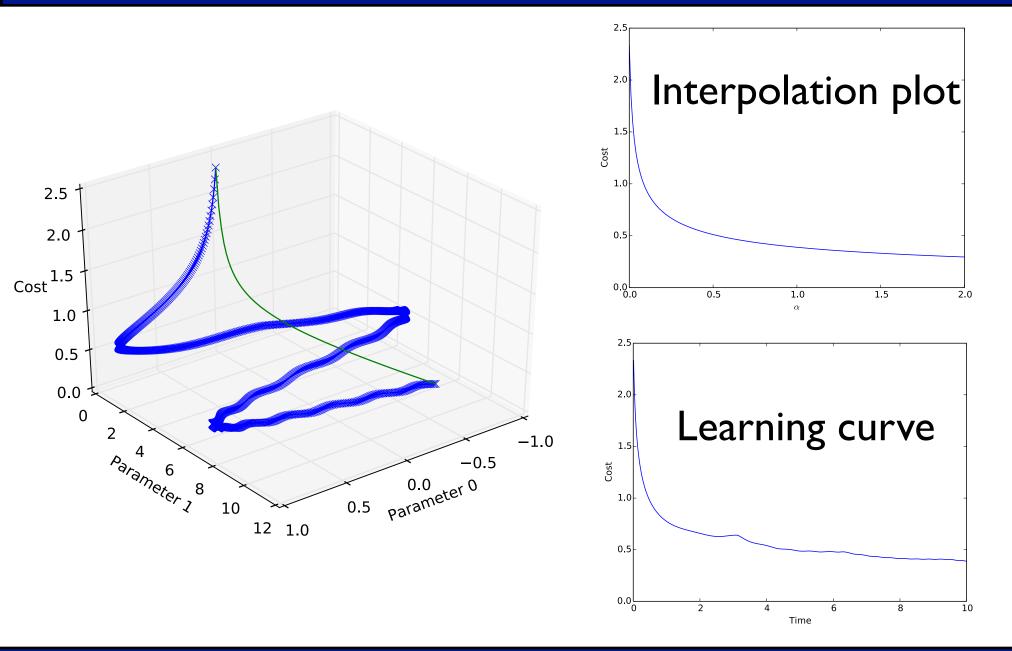
History written by the winners

- Visualize trajectories of (near) SOTA results
- Selection bias: looking at success
- Failure is interesting, but hard to attribute to optimization
- Careful with interpretation
 - SGD never encounters X?
 - SGD fails if it encounters X?

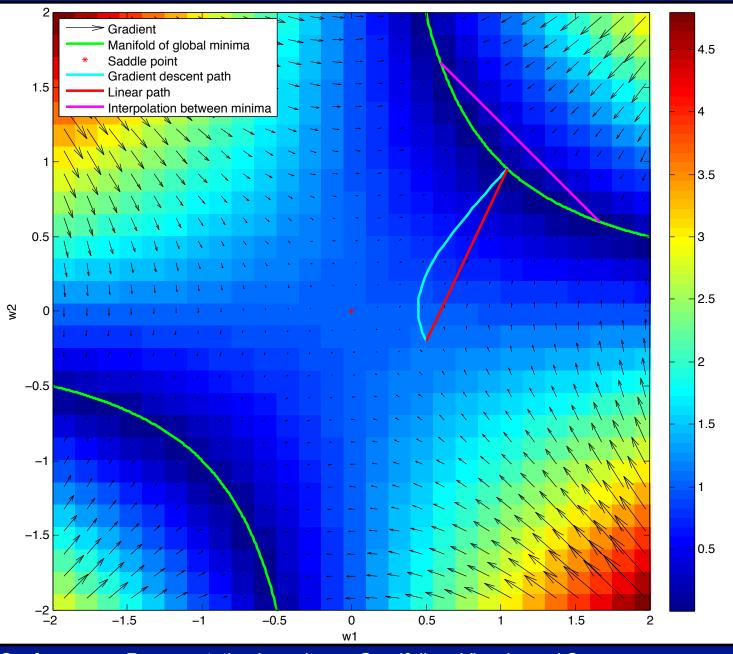
2-D subspace visualization



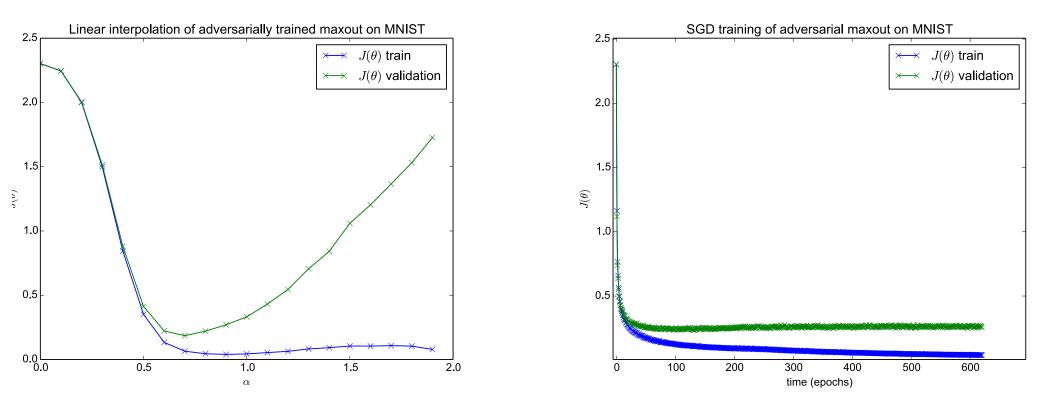
A special 1-D subspace



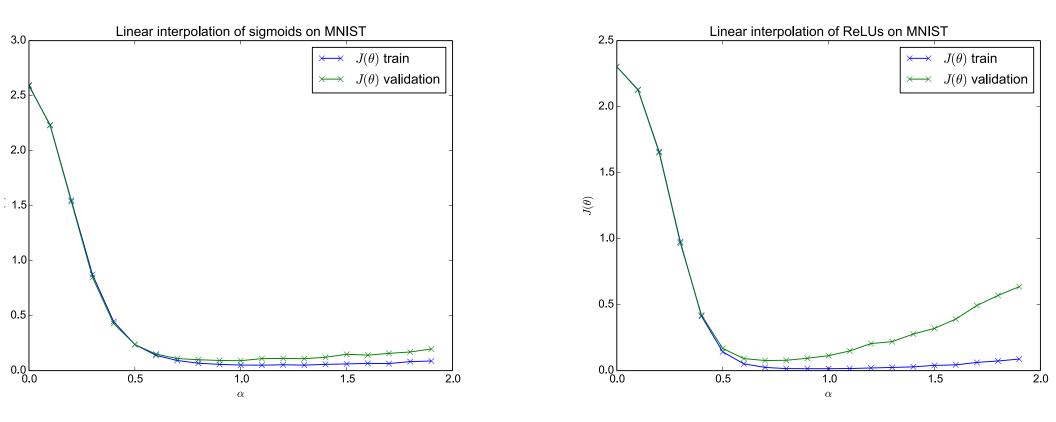
2-parameter deep linear model



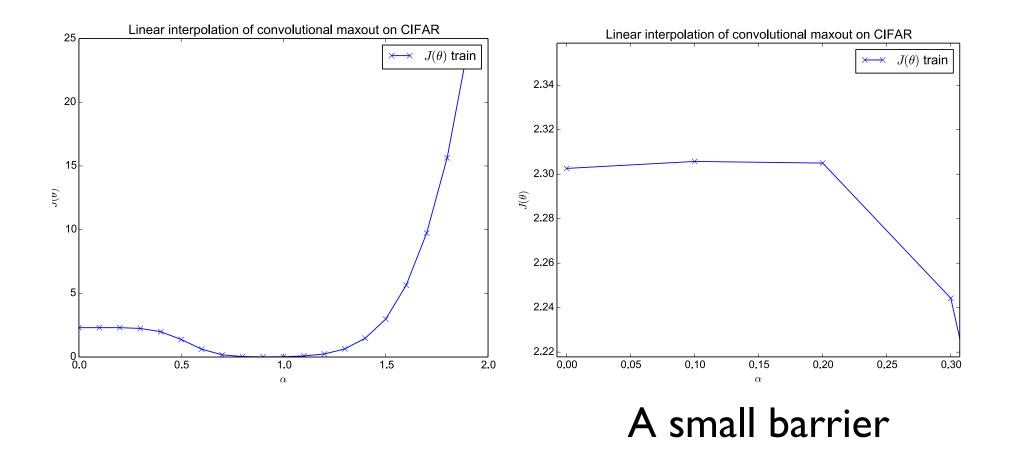
Maxout / MNIST experiment



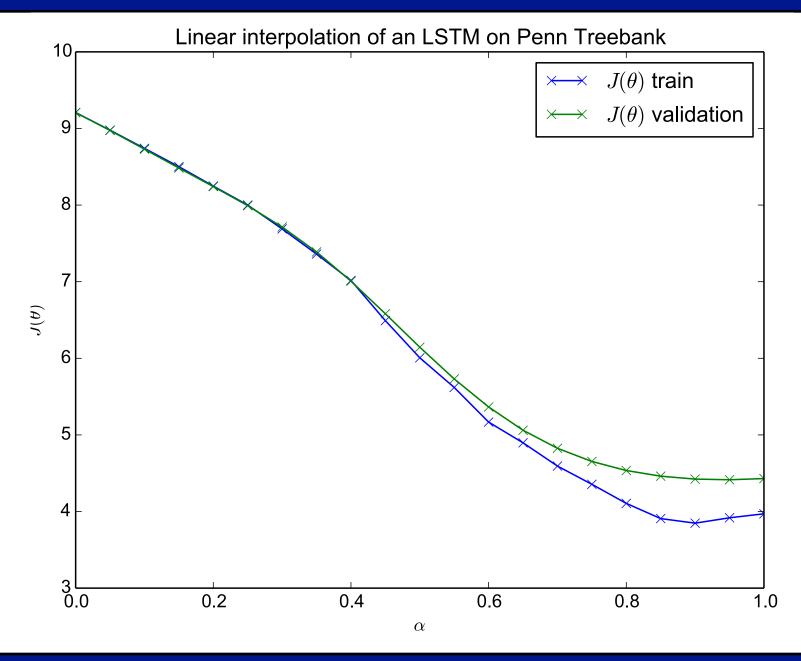
Other activation functions



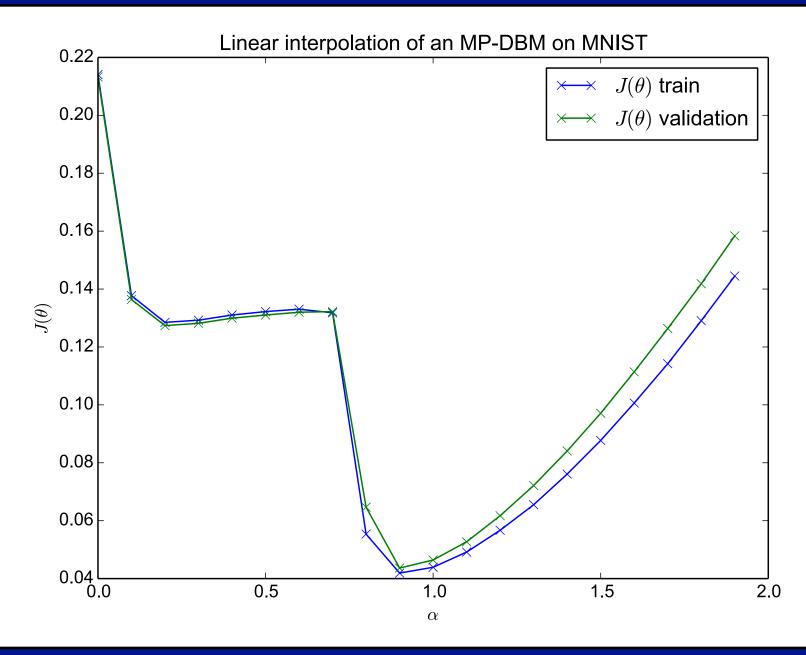
Convolutional network



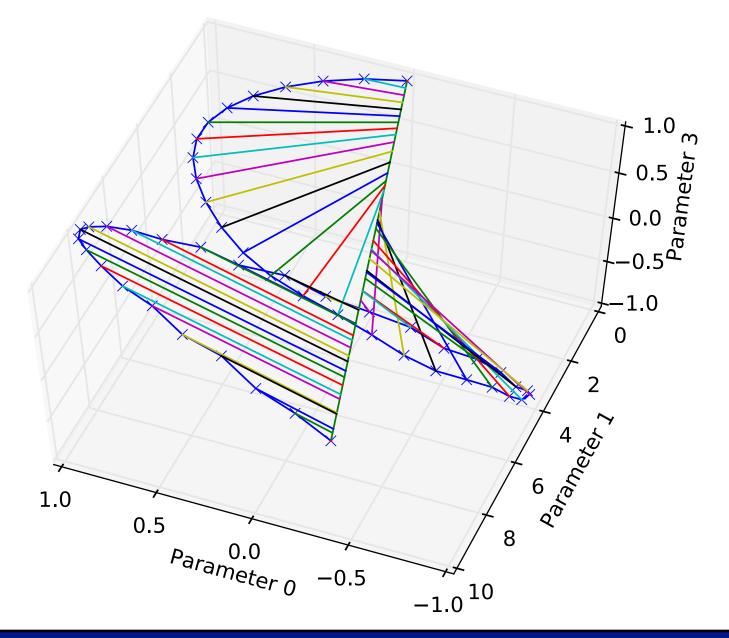
LSTM



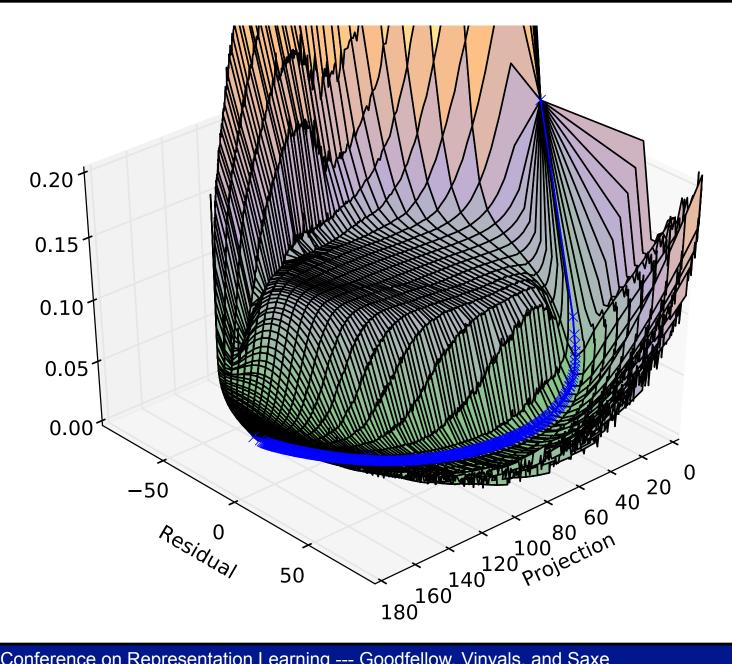
MP-DBM



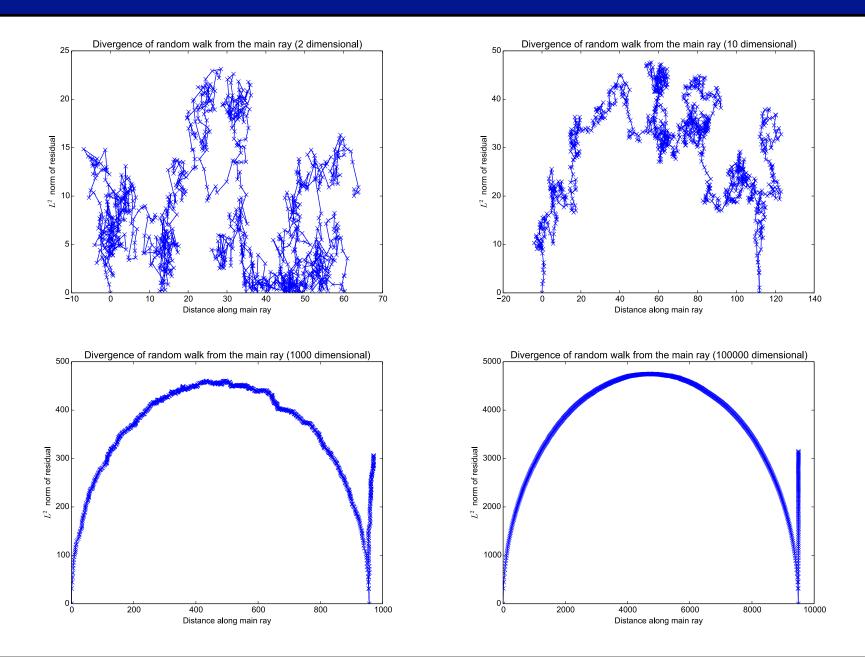
3-D Visualization



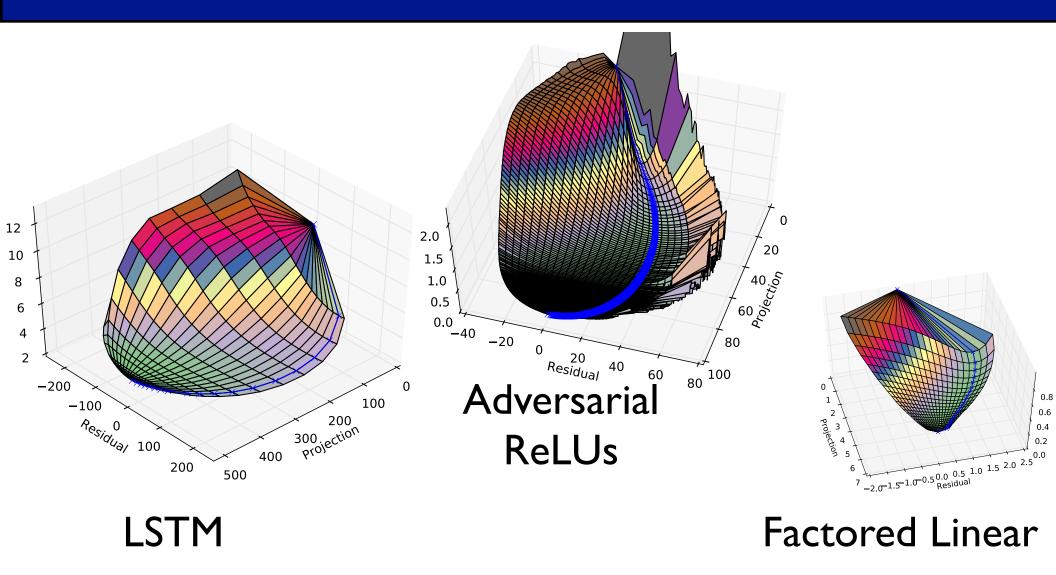
3-D MP-DBM visualization



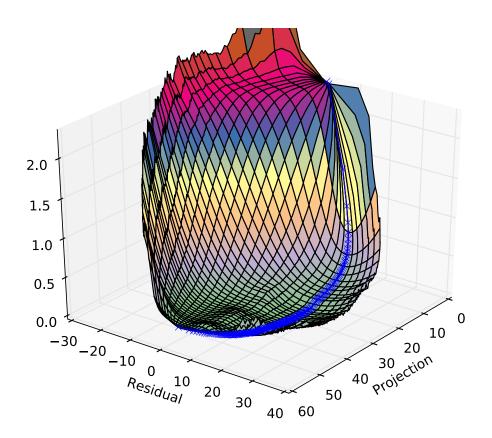
Random walk control

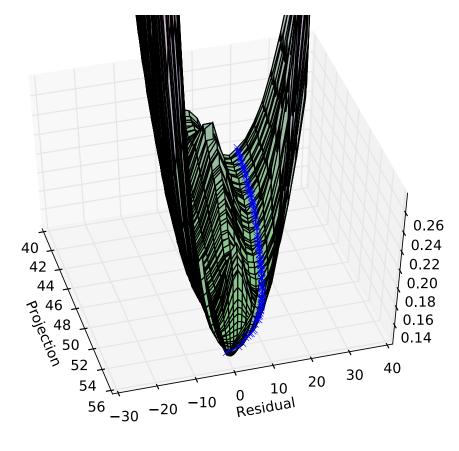


3-D Plots Without Obstacles



3-D Plot of Adversarial Maxout





SGD naturally exploits negative curvature!

Obstacles!

Conclusion

- For most problems, there exists a linear subspace of monotonically decreasing values
- For some problems, there are obstacles between this subspace the SGD path
- Factored linear models capture many qualitative aspects of deep network training
- See more visualizations at our poster / demo / paper