

A Good Image Generator Is What You Need For High-Resolution Video Synthesis

Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng, Dimitris N. Metaxas, Sergey Tulyakov

Snap Inc.

Video Synthesis: Background

• Video synthesis: Create *unseen* video clips from random noises

Video Synthesis: Difficulties

- <u>Lack</u> of training data.
- <u>Large</u> Models, hard to train.
- <u>High</u> cost for data collection / training.

TGANv2^[2]: 256 resolution

[1] Analyzing and Improving the Image Quality of StyleGAN, CVPR 2020
[2] Train Sparsely, Generate Densely: Memory-efficient Unsupervised Training of High-resolution Temporal GAN, IJCV 2020

Methods: Intuition

- Reuse <u>pre-trained</u> image generator G_I in video synthesize training.
- Given image G_I: represent a video with a trajectory of random noises.

Methods: Framework

Motion generator (find trajectory) + Image generator (pre-trained, fixed) + 2D discriminator (content consistency) + 3D discriminator (motion)

Methods: Motion Generator

- Motion generator: find the <u>trajectory</u> in the latent space of <u>image generator</u>
- LSTM encoder + LSTM decoder
- Estimate residual of previous frame \rightarrow content/motion disentanglement

Motion Generator: Improve Diversity

- Mutual information loss: Maximize mutual info between e and h
- e ~ Gaussian: motion randomness
- h: output of LSTM decoder

Methods: Image Generator

- Train image generator with video frames: in-domain video synthesis
- Use off-the-shelf image generator: cross-domain video synthesis
 - Cross-domain video synthesis: content from image dataset, motion from video dataset.
 - <u>Save lots of</u> costs in data collection: synthesis dog videos with dog <u>images</u> & human <u>videos</u>.

Framework: Properties

- <u>High-resolution</u> video synthesis
- Motion/content <u>disentanglement</u>
- <u>Cross-domain</u> video synthesis
- <u>Long</u> sequence generation
- <u>Low</u> computation cost

Properties: High-resolution

Pre-trained image generator: 1024x1024

Properties: Motion/content Disentanglement

Residual design in motion generator

Properties: Cross-domain Video Synthesis

512 resolution, human face videos as training data

Properties: Cross-domain Video Synthesis

256 resolution, time-lapse videos as training data

Properties: Long Sequence Generation

(AFHQ, Vox): Interpolation

FaceForensics: LSTM unrolling

Properties: Low Computation Cost

- Pre-trained image generator:
 - <u>Small</u> batch-size for video training (as low as 8)
 - **<u>Fixed</u>** image generator: No gradient in video synthesis training
- Our models are trained with GPU (DVDGAN^[I]: <u>TPU</u> only)
 - Save computation cost by $\underline{15 \sim 40X}$

Experiments: In-Domain (UCF-101)

Method	IS (†)	$FVD(\downarrow)$
VGAN	$8.31 \pm .09$	-
TGAN	$11.85\pm.07$	-
MoCoGAN	$12.42 \pm .07$	-
ProgressiveVGAN	$14.56 \pm .05$	-
TGANv2	$26.60 \pm .47$	1209 ± 28
DVD-GAN	$27.38\pm.53$	-
Ours	33.95 ± .25	$\overline{700\pm24}$

Experiments: In-Domain (FaceForensics)

Method	$FVD(\downarrow)$	ACD (\downarrow)
GT	9.02	0.2935
TGANv2 Ours	58.03 53.26	0.4914 0.3300

[I] ACD from: MoCoGAN: Decomposing Motion and Content for Video Generation, CVPR 2018

Experiments: In-Domain (Sky Time-lapse)

Method	$FVD(\downarrow)$	PSNR (†)	SSIM (†)
Up-B	-	25.367	0.781
MDGAN DTVNet Ours	840.95 451.14 77.77	13.840 21.953 22.286	0.581 0.531 0.688

Ablation: Mutual Info Loss

w/o mutual info loss

w/ mutual info loss

Ablation: Contrastive Loss

w/o contrastive discriminator

w/ contrastive discriminator

Summary

- Good image generator benefits video generation
 - LSTM motion generator + residual design
 - Pre-trained & fixed image generator
 - Contrastive 2D discriminator
 - Mutual information loss
- Code will be released at: <u>https://github.com/snap-research/MoCoGAN-HD</u>

Thanks!