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Main Contribution: GNNs suffer from a bottleneck that causes over-squashing 
when trying to capture long-range interactions 



A GNN as a Message Passing Network [Gilmer, ICML’2017]
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• Initial representations are embeddings or features 

• At every message passing step (=layer): 

• Every node computes a message and sends it to its neighbors 

• Every node updates its representation based on its received messages 
and its own previous representation
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A GNN as a Message Passing Network [Gilmer, ICML’2017]
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• Initial representations are embeddings or features 

• At every message passing step (=layer): 

• Every node computes a message and sends it to its neighbors 

• Every node updates its representation based on its received messages 
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A GNN as a Message Passing Network [Gilmer, ICML’2017]
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• Given : 

• Node classification, graph classification, link prediction...

{h(K)
u ∣ u ∈ V}
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• Initial representations are embeddings or features 

• At every message passing step (=layer): 

• Every node computes a message and sends it to its neighbors 

• Every node updates its representation based on its received messages 
and its own previous representation
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What are graph neural networks good for?

• GNNs are good for short-range tasks:

• Paper subject classification (Cora/Citeseer/Pubmed, Sen et al., 2008)

• Friendship/collaboration prediction (Open Graph Benchmark, Hu et al. 2020):

• But some tasks require longer-range interaction…
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Very local property,  

requires only 2-3 message-passing steps?
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The GNN Bottleneck
Imagine that a prediction of a node depends on information coming from a distant node.
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The GNN Bottleneck
Imagine that a prediction of a node depends on information coming from a distant node.

We need:       Layers ≥ Radius
In this case, we need at least 4 GNN layers for distant information to reach the target node.
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The GNN Bottleneck
Imagine that a prediction of a node depends on information coming from a distant node.

We need:       Layers ≥ Radius
In this case, we need at least 4 GNN layers for distant information to reach the target node.

However, the receptive field of the target node grows exponentially with the number of layers
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The GNN Bottleneck
Imagine that a prediction of a node depends on information coming from a distant node.

We need:       Layers ≥ Radius
In this case, we need at least 4 GNN layers for distant information to reach the target node.

However, the receptive field of the target node grows exponentially with the number of layers
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The GNN Bottleneck
Imagine that a prediction of a node depends on information coming from a distant node.

We need:       Layers ≥ Radius
In this case, we need at least 4 GNN layers for distant information to reach the target node.

However, the receptive field of the target node grows exponentially with the number of layers
5

t=4 ?
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To flow a message to a distance of 4, we need to squash  messages into a single node vector. O (degree4)

An exponential amount of information is squashed into a fixed-size vector.

Over-squashing
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Over-squashing

Actually, this is similar to the bottleneck of recurrent sequential models (before attention),  

except that the receptive field in RNNs grows linearly, while in GNNs it grows exponentially 
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Over-squashing prevents GNNs from fitting the training data

• At a radius of 4, some GNNs cannot even reach 100% training accuracy

• At a radius of 5, all GNNs could not reach 100% training accuracy
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• Combinatorially, to fit the dataset:    232⋅d > (2r)!

(2)2r−1

232⋅d > (2r)!

(2)2r−1Empirical min d Theoretical min d



GCN and GIN suffer from over-squashing more than GAT and GGNN

• GCN 

• GIN 

• GAT 

• GGNN      
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Public datasets

• To break the bottleneck:
• We modified the last GNN layer to be fully-adjacent (FA) - every node has an edge to every other node
• Re-trained without adding weights, without any hyperparameter tuning

• A temporary solution, just to show that the bottleneck is so prevalent and untreated — that even the 
simplest solution helps.

• +1% accuracy increase in Variable Misuse

• -40% error reduction in predicting quantum chemical properties of molecules (“QM9”)

• -5% error reduction in classifying biochemical compounds (“NCI1”)

• -12% error reduction in classifying enzymes (“ENZYMES”)
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