Long-tail learning via logit adjustment

Aditya Krishna Menon

Himanshu Jain

Sadeep Jayasumana

Andreas Veit

Ankit Singh Rawat

Sanjiv Kumar

Long-tail learning

Classification where the label distribution is skewed

Summary of our work

✓ A statistical perspective of long-tail learning

✓ Unifies and generalises existing approaches

✓ Yields new post-hoc and loss modification approaches

Existing approaches

General strategies

Data sampling

Weight normalisation

For instance x, a neural model computes logits

$$f_y(x) = W_y^{\mathsf{T}} \Phi(x)$$

X Norms may be smaller for rare classes!

Weight normalisation [Kang et al., '20]:

- (1) Learn w, Φ via standard ERM
- (2) Post-hoc normalise the weight norms

Decouples representation and classifier learning Google

Loss modification

Enforce varying margin depending on label frequency:

Softmax:

$$\ell(y, f(x)) = \log \left[1 + \sum_{y' \neq y} e^{f_{y'}(x) - f_y(x)} \right]$$

e.g., 1/P(y)

Encourage higher margin between rare

Adaptive margin:

$$\ell(y,f(x)) = \log\Big[1 + \sum\nolimits_{y' \neq y} e^{\delta_y} \cdot e^{f_{y'}(x) - f_y(x)}\Big], \text{ +ve and all -ves}$$

[Cao et al., 2019]

Equalised loss:

$$\ell(y,f(x)) = \log \left[1 + \sum\nolimits_{y' \neq y} e^{\delta_{y'}} \cdot e^{f_{y'}(x) - f_y(x)} \right], \text{ from having gradient overwhelmed}$$

Prevent rare -ves

[Tan et al., 2020] Göogle

Weight normalisation: limitation

Weight norms don't correlate with P(y) when using Adam

A statistical framework

Balanced error

Typically, measure misclassification error:

Under class imbalance, can measure balanced error:

$$\mathrm{BER}(h) = \sum_{i \in [L]} \frac{1}{L} \cdot \mathbb{P}(y \neq h(x) \mid y = i)$$
 Treat all classes equally

Statistical view of long-tail learning

Bayes-optimal prediction:

$$\underset{y \in [L]}{\operatorname{argmax}}_{y \in [L]} \mathbb{P}^{\operatorname{bal}}(y \mid x)$$

$$\downarrow$$
Balanced label distribution

Equivalently, if
$$P(y \mid x) \propto \exp(s_y^*(x))$$
,

rare classes

Strategies for long-tail learning

Bayes-optimal solution suggests two strategies:

- (1) Estimate $P(y \mid x)$, and adjust logits post-hoc
- (2) Directly estimate $P_{bal}(y \mid x)$ by inherently adjusting logits

Post-hoc logit adjustment

Standard prediction:

$$\operatorname{argmax}_{y \in [L]} \exp(w_y^{\mathrm{T}} \Phi(x)) = \operatorname{argmax}_{y \in [L]} f_y(x)$$

Logit adjusted prediction:

$$\operatorname{argmax}_{y \in [L]} \exp(w_y^{\mathrm{T}} \Phi(x)) / \pi_y^{\tau} = \operatorname{argmax}_{y \in [L]} f_y(x) - \tau \cdot \log \pi_y,$$
Scaling parameter Estimate of $P(y)$

When τ > 1, equivalent to temperature-scaling the probabilities

Comparison to weight normalisation

Logit adjustment performs additive correction:

$$\operatorname{argmax}_{y \in [L]} \exp(w_y^{\mathrm{T}} \Phi(x)) / \pi_y^{\tau} = \operatorname{argmax}_{y \in [L]} f_y(x) - \tau \cdot \log \pi_y,$$

Weight normalisation performs multiplicative correction:

$$\operatorname{argmax}_{y \in [L]}(w_y^{\mathrm{T}} \Phi(x)) / \pi_y^{\tau} = \operatorname{argmax}_{y \in [L]} f_y(x) / \pi_y^{\tau}$$

Logit adjusted loss

Logit adjusted softmax cross-entropy:

$$\ell(y, f(x)) = -\log \frac{e^{f_y(x) + \tau \cdot \log \pi_y}}{\sum_{y' \in [L]} e^{f_{y'}(x) + \tau \cdot \log \pi_{y'}}}$$

Add fixed offset to logits

> 1 when P(y) > P(y), i.e., -ve is more common than +ve

Now predict argmax $f_{y}(x)$ as normal

A margin view

Consider the pairwise margin loss

$$\ell(y, f(x)) = \log \left[1 + \sum_{y' \neq y} e^{\Delta_{yy'}} \cdot e^{f_{y'}(x) - f_y(x)} \right]$$

Existing losses $\rightarrow \Delta_{vv}$ depends on y or y', but not both

Logit adjustment
$$\rightarrow \Delta_{yy'} = \log P(y')/P(y) = \log P(y') - \log P(y)$$

Enforces a relative margin between labels

Experiments

Experiments: synthetic data

Consider data drawn from a mixture of isotropic Gaussians, with P(y = 1) = 5%

Bayes-optimal for balanced error: separator passing through origin

ERM will favour fewer mistakes on dominant class

Experiments: synthetic data

Converge to Bayes solution (consistency)

Weight normalisation fails: correct label has -ve score!

Experiments: real-world data

Method	CIFAR-10-LT	CIFAR-100-LT	ImageNet-LT	iNaturalist
ERM	27.16	61.64	53.11	38.66
Weight normalisation ($\tau = 1$) (Kang et al., 2020)	24.02	58.89	52.00	48.05
Weight normalisation ($\tau = \tau^*$) (Kang et al., 2020)	21.50	58.76	49.37	34.40*
Class-balanced (Cui et al., 2019)	25.43 [‡]	60.40^{\ddagger}	53.21	35.84 [‡]
Adaptive (Cao et al., 2019)	26.65^{\dagger}	60.40^{\dagger}	52.15	33.31
Adaptive + DRW (Cao et al., 2019)	22.97^{\dagger}	57.96 [†]	49.85	32.00^{\dagger}
Equalised (Tan et al., 2020)	26.02	57.26	54.02	38.37
Logit adjustment post-hoc ($\tau = 1$)	22.60	58.24	49.66	33.98
Logit adjustment loss ($\tau = 1$)	22.33	56.11	48.89	33.64
Logit adjustment plus adaptive loss ($\tau = 1$)	22.42	55.92	51.25	31.56

Break-down of error rates

"Medium": [20, 100] examples

"Few": < 20 examples

Sacrifice a little on "head" classes for gains on "tail" classes

Summary

Summary of our work

✓ A statistical perspective of long-tail learning

✓ Unify and generalise existing works

✓ New post-hoc and loss modification approaches