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Real-life challenges for Autonomous Learning

• Learning is self-supervised (no reward signal during training)
• Observations are high-dimensional
• Tasks and observations are compositional

image sources: parentmap.com, nvidia.com 2 / 16



Prior work: Self-supervised Visual RL

• VAE latent space is used as goal space
• Reward signal based on distance in VAE latent space

Image from Nair et al., 2018
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Problems with VAE goal space

• Distributed VAE representation suffers from binding problem 1

color color color

• Some dimensions encode task-irrelevant information

1[Greff et al., 2016, Greff et al., 2020]
4 / 16



Problems with VAE goal space

• Distributed VAE representation suffers from binding problem 1

color color color

• Some dimensions encode task-irrelevant information

1[Greff et al., 2016, Greff et al., 2020]
4 / 16



Object-centric representations provide better goals

location

appearance 

Object-centric representation, 
set of vectors

High-dimensional observation
(e.g. image)

Object-centric representation for multi-object observations

• Observation is represented as set of (low-dimensional) vectors

• Learning of representations is fully unsupervised

• Each object representations can be additionally structured
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Our contributions

• Developed Self-supervised Multi-Object RL (SMORL)
agent that autonomously learns skills in compositional

environments

• Designed goal-conditioned attention policy
compatible with object-centric representations

• Proposed efficient self-supervised training that

exploits structured latent space
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Self-supervised Multi-Object RL (SMORL)

Goal-
conditioned

attention
policy 

SCALOR
encoder

SMORL pipeline during evaluation

• Learned policy is sequentially achieving all the recognised sub-goals.
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Goal-conditioned attention policy

Keys Values Query

Scaled Dot-Product Attention 

MLP

Input set Sub-goal

Action 

Goal-conditioned
attention policy

• Compatible with variable-size
input sets Z

• Attend to elements of the input set Z
that are important for current goal zg
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SMORL training is self-supervised

Provide goal-dependent
reward function

Generate feasible goals for
training

Train as usual goal-
conditioned RL agent 
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Goal generation during training

SCALOR
encoder

New sub-goalSub-goal 

 

• Fit p(zwhere|zwhat) to observed data to estimate valid locations
• Pick random object representation zg = (zwhere

g , zwhat
g )

• Sample new zwhere from p(zwhere|zwhat
g )
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Reward function in structured latent space

Sub-goal

• Find most similar object: k = arg mini ||zwhat
i − zwhat

g ||
• Reward in subspace of locations: r(Z, zg) = −||zwhere

k − zwhere
g ||
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SMORL training combines SAC with object-centric
representations
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Visual Multi-object Rearrange Environment

Visual Multi-object Rearrange Environment

• Multi-object version of multiworld environment
• Objects placed randomly each episode, so that agent can not just

memorize initial optimal actions. 12 / 16



SMORL with GT representation
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SMORL with high-dimensional observations

Visual Rearranging
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Qualitative results on Visual Rearrange environment

Visual Rearrange environment
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For more videos visit:

martius-lab.github.io/SMORL
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https://martius-lab.github.io/SMORL/


Conclusions

Object-centric representations improve perfor-
mance of self-supervised visual RL agent

Goal-conditioned attention policy aggregates
object-centric representations with focus on cur-
rent goal

Additional structure in each object representation
exploited for goal generation and reward function
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Questions?

Poster session 8: May 5, 9-11 a.m. PDT

Project website: martius-lab.github.io/SMORL

Contact: andrii.zadaianchuk@tuebingen.mpg.de
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https://martius-lab.github.io/SMORL/
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