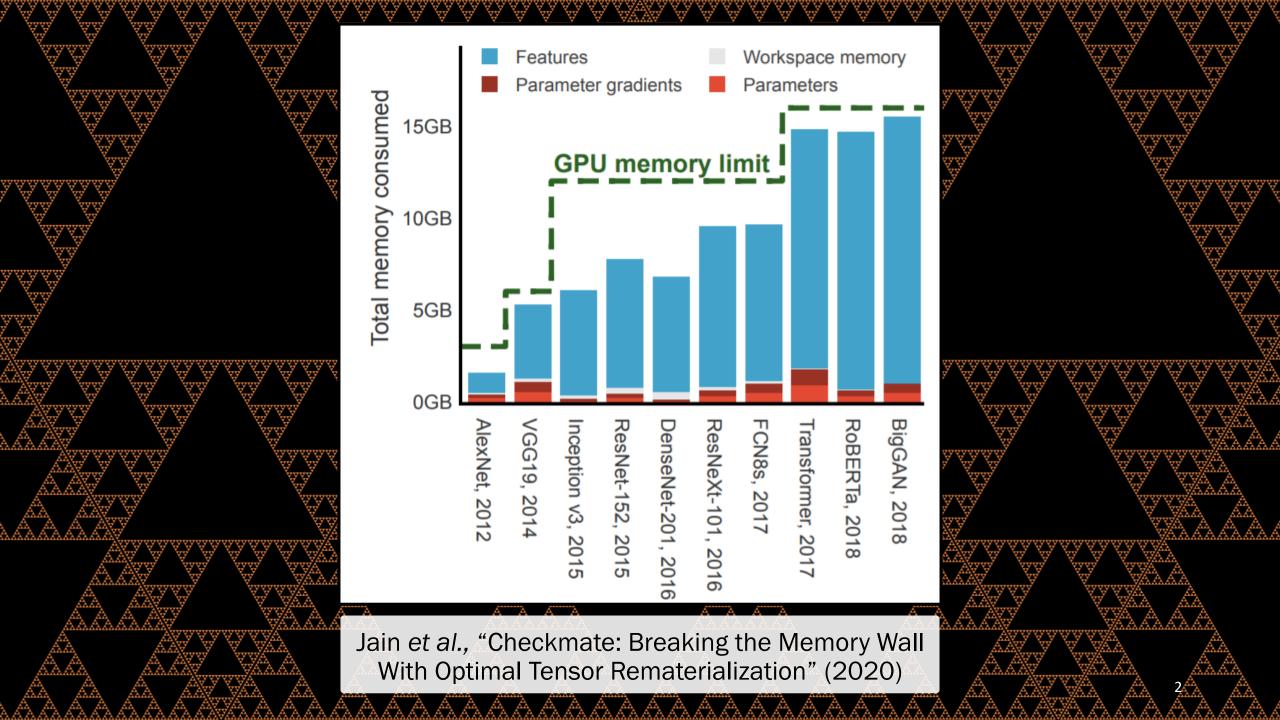
CALENSUL Rematerialization

Presenter: Steven Lyubomirsky*

Mike He Marisa Kirisame* Altan Haan* Jennifer Brennan

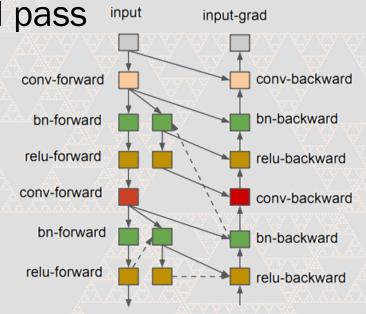
Jared Roesch Tianqi Chen Zachary Tatlock

*Equal contribution



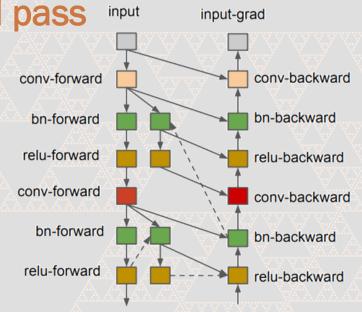
Checkpointing: Trade Time for Space

- Recompute activations instead of storing them
- Gradient Checkpointing, Chen et al. (2016)
 - Pick segments to recompute in backward pass
 - $O(\sqrt{N})$ memory for O(N) extra ops
 - Many later segmenting approaches
- Checkmate, Jain et al. (2020)
 - Rematerialize individual values
 - ILP for optimal(!) planning



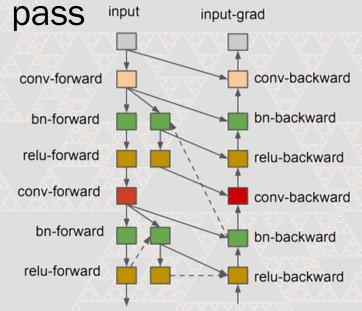
Checkpointing: Trade Time for Space

- Recompute activations instead of storing them
- Gradient Checkpointing, Chen et al. (2016)
 - Pick segments to recompute in backward pass
 - $O(\sqrt{N})$ memory for O(N) extra ops
 - Many later segmenting approaches
- Checkmate, Jain et al. (2020)
 - Rematerialize individual values
 - ILP for optimal(!) planning



Checkpointing: Trade Time for Space

- Recompute activations instead of storing them
- Gradient Checkpointing, Chen et al. (2016)
 - Pick segments to recompute in backward pass
 - $O(\sqrt{N})$ memory for O(N) extra ops
 - Many later segmenting approaches
- Checkmate, Jain et al. (2020)
 - Rematerialize individual values
 - ILP for optimal(!) planning

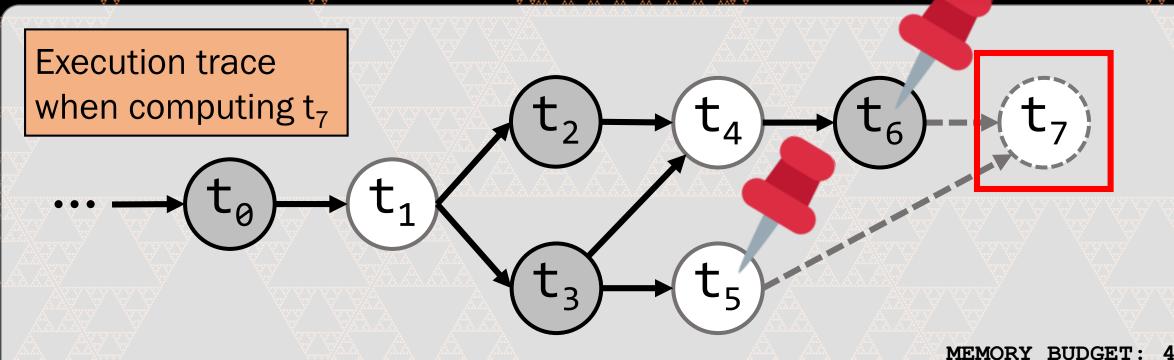


Static Planning is Unnecessary

- Past approaches plan checkpoints in advance
- Require static knowledge of the model
- Planning can be expensive, limits applications
- Our contributions:
 - Static planning is unnecessary for checkpointing
 - Still achieve good compute-memory tradeoffs

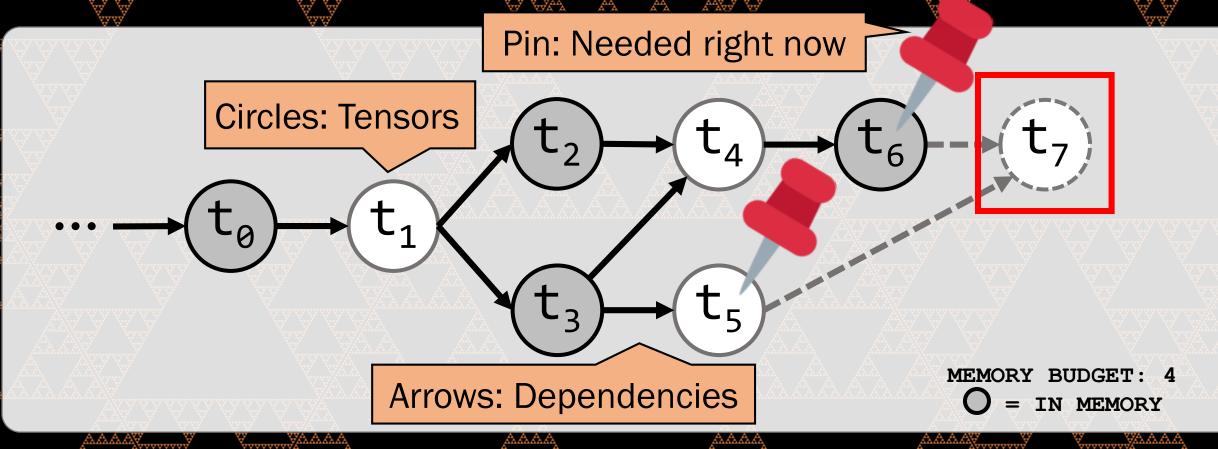
Dynamic Tensor Rematerialization

- Cache-like approach: A runtime system
 - No static information necessary
 - Greedily allocate, evict and recompute as needed
 - Collects metadata to guide heuristics
 - Operates at a high level of abstraction
- Still competitive with static planning!

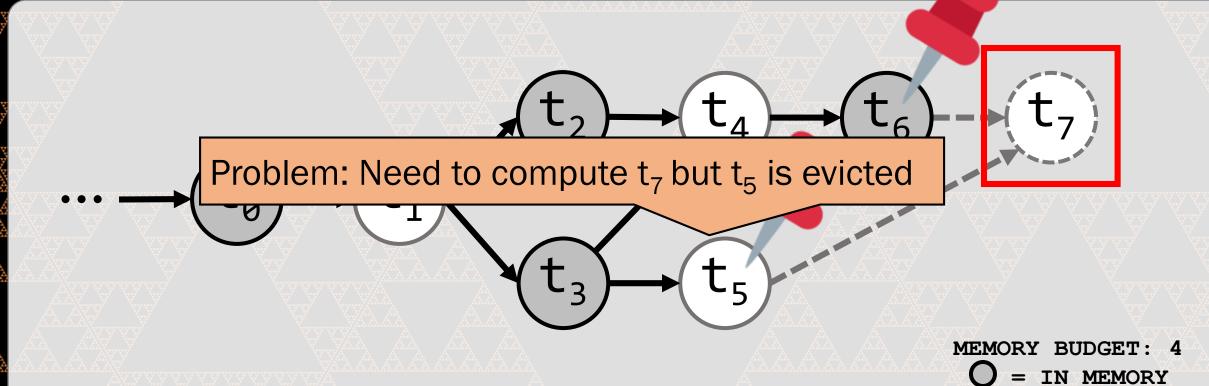


O = IN MEMORY

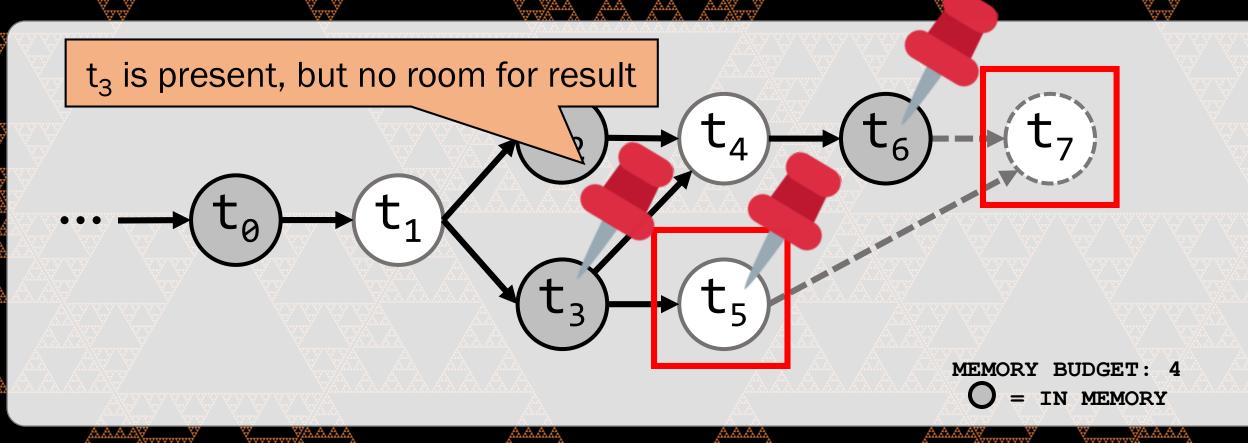
Current operation: PerformOp(op₇, [t₅, t₆])



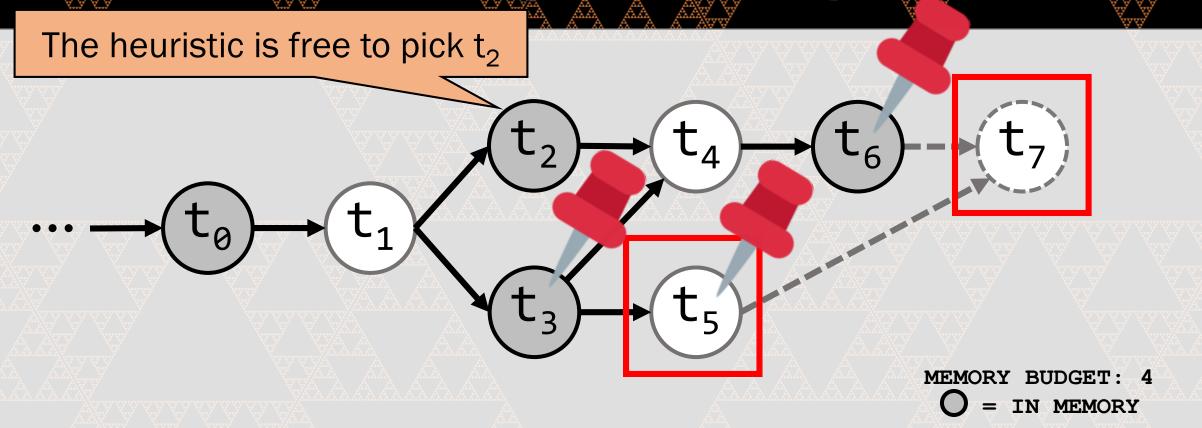
Current operation: PerformOp(op₇, [t₅, t₆])



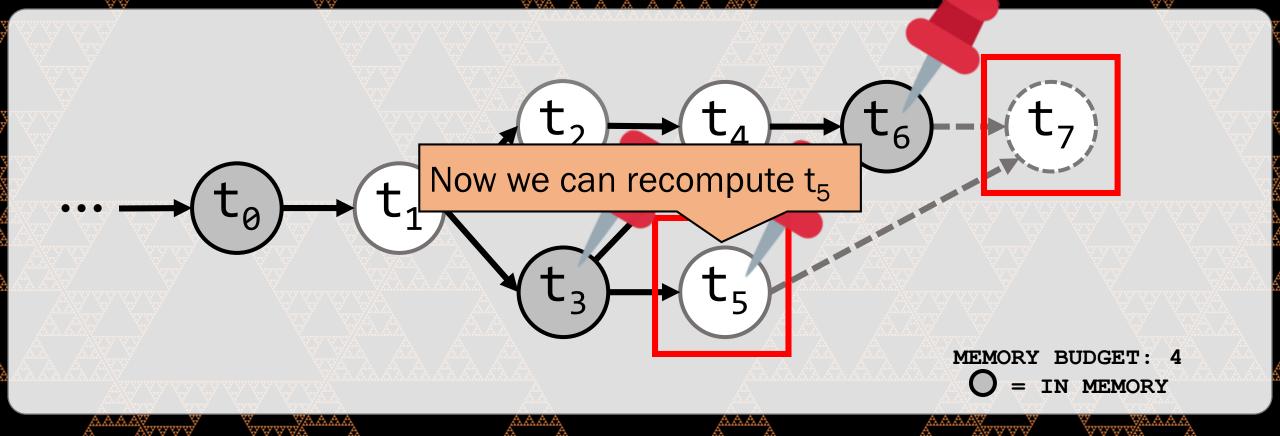
Current operation: Rematerialize(t₅)



Current operation: PerformOp(op₅, [t₃])

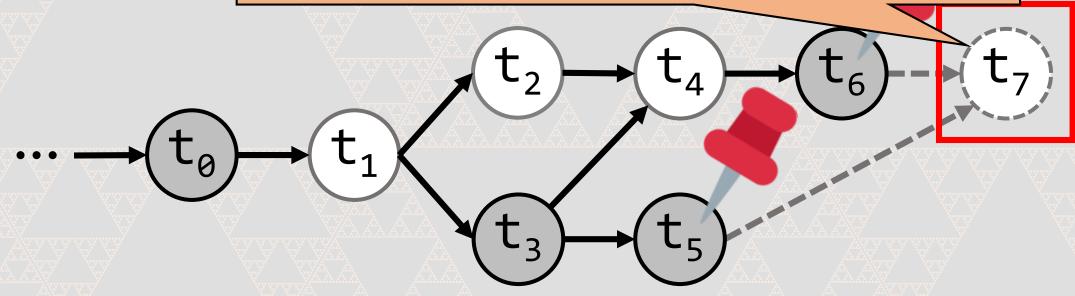


Current operation: PerformEviction()



Current operation: AllocateBuffer(t₅.size); op₅(t₃)

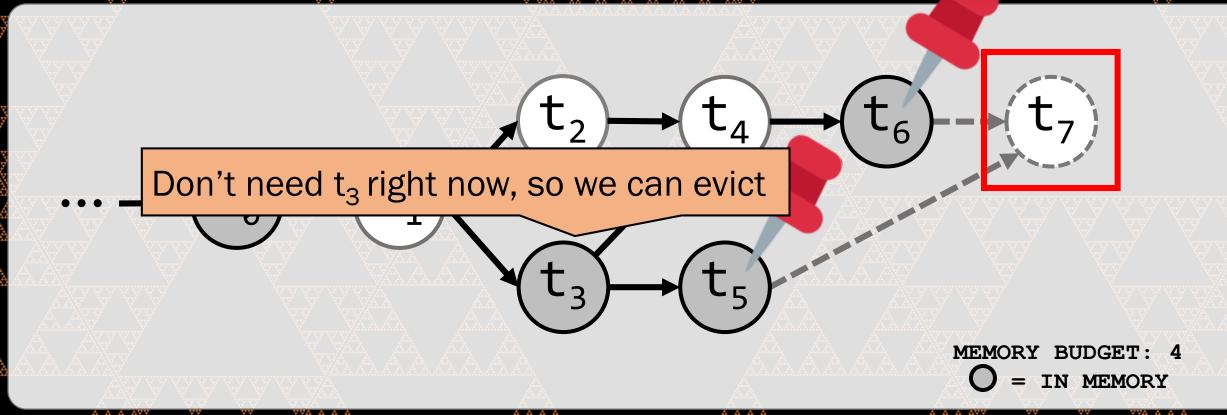
Our arguments are back—but still no room for t₇!



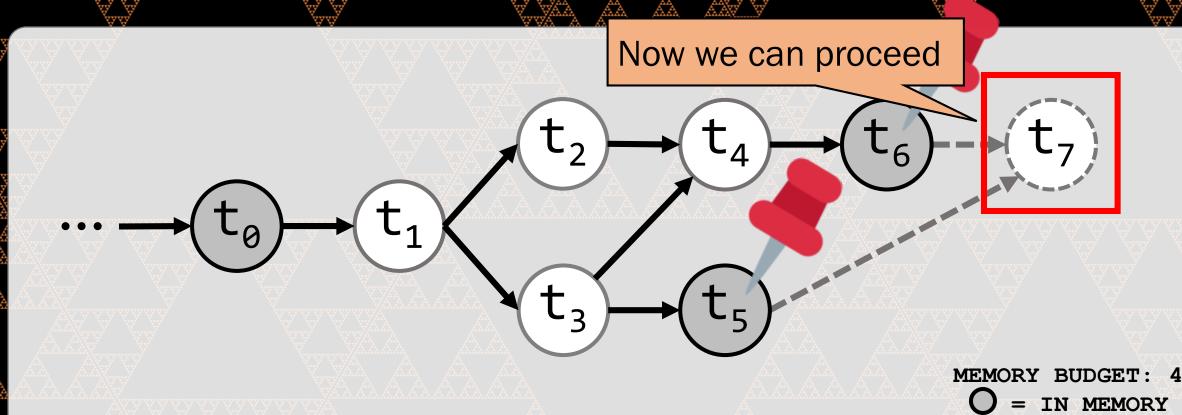
MEMORY BUDGET: 4

O = IN MEMORY

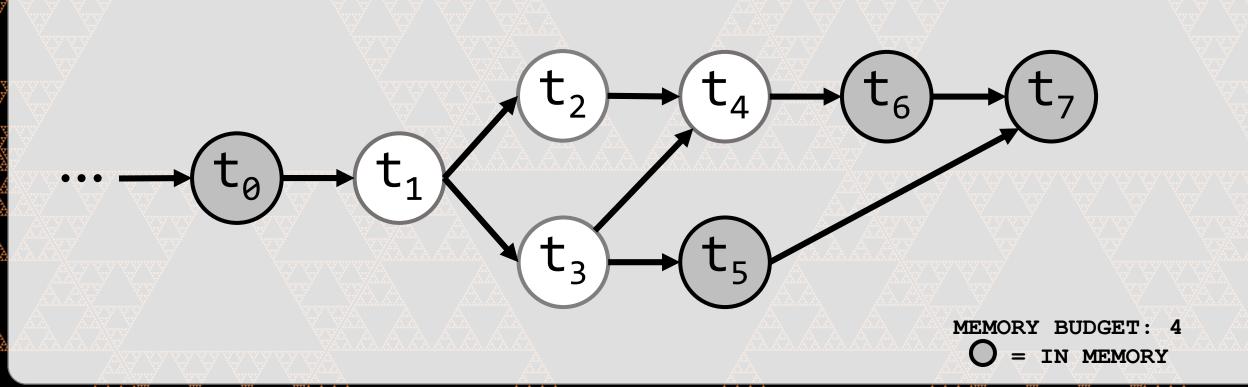
Current operation: AllocateBuffer(t₇.size)



Current operation: PerformEviction()



Current operation: $op_7(t_5, t_6)$



DTR: Just Some Callbacks

AllocateBuffer(size): Allocate if enough room, else evict until there is

PerformEviction(): Heuristic chooses a tensor to evict

Rematerialize(t): Recompute t by replaying its parent op (PerformOp)

PerformOp(op, args):

- Rematerialize evicted arguments
- Make room for result
- Update metadata

What Do Heuristics Look Like?

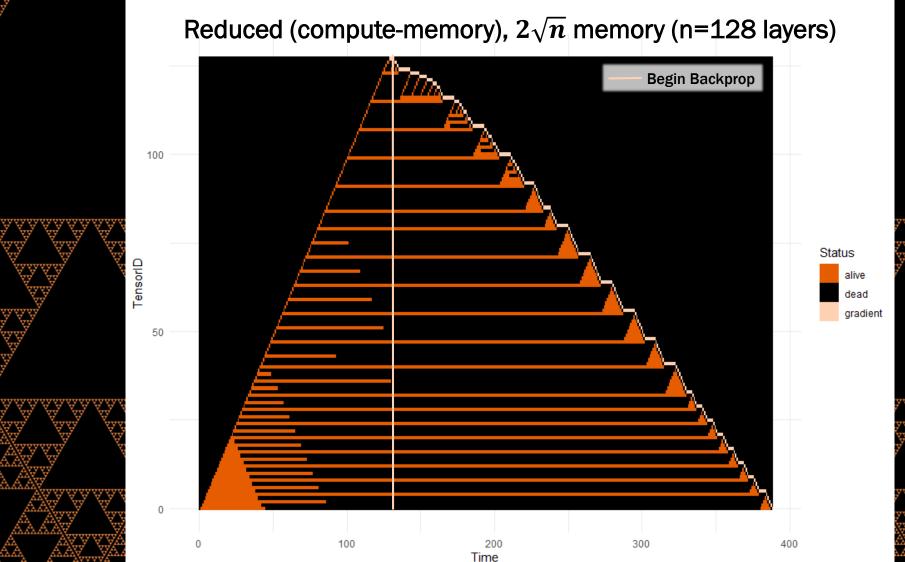
- Dynamic prediction of which tensor is least valuable
- Useful metadata, easy to track:
 - Cost c(t): Avoid recomputing expensive tensors
 - Staleness s(t): Recently used \Longrightarrow likely to be used soon
 - Memory m(t): Large tensors are most profitable to evict
- Resulting policy: minimize $h(t) = c(t)/(m(t) \cdot s(t))$
- Others: LRU $\left(\frac{1}{s(t)}\right)$ and largest-first $\left(\frac{1}{m(t)}\right)$

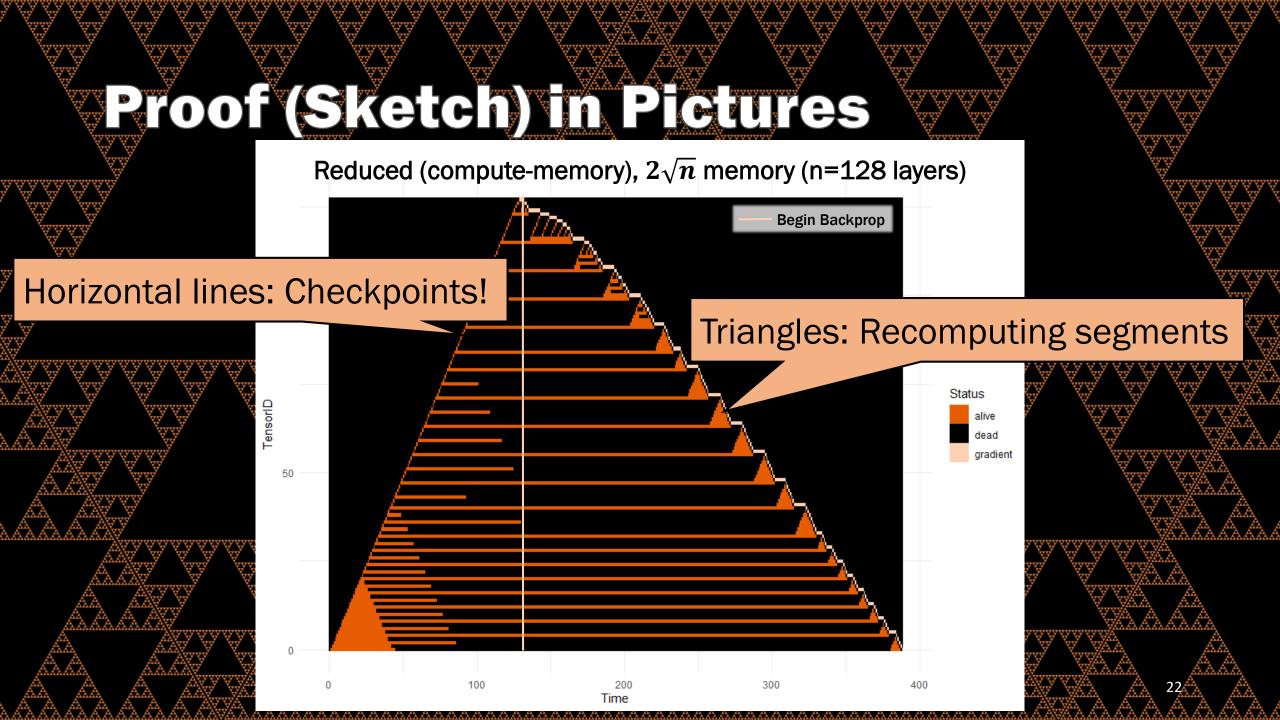
Formal Bounds

Performance on *N*-layer linear feedforward network:

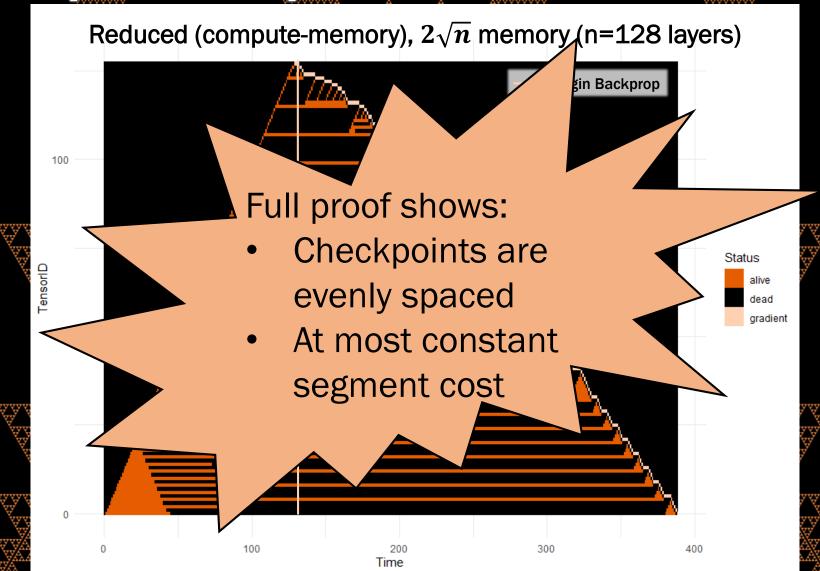
- $\Omega(\sqrt{N})$ memory and O(N) operations
- Same bound as Chen et al. (2016)
- No advance knowledge of model!

Proof (Sketch) in Pictures Reduced (compute-memory), $2\sqrt{n}$ memory (n=128)





Proof (Sketch) in Pictures



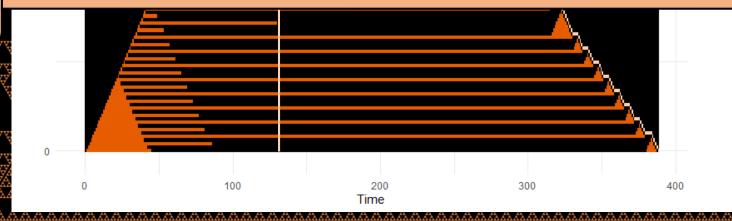
Proof (Sketch) in Pictures

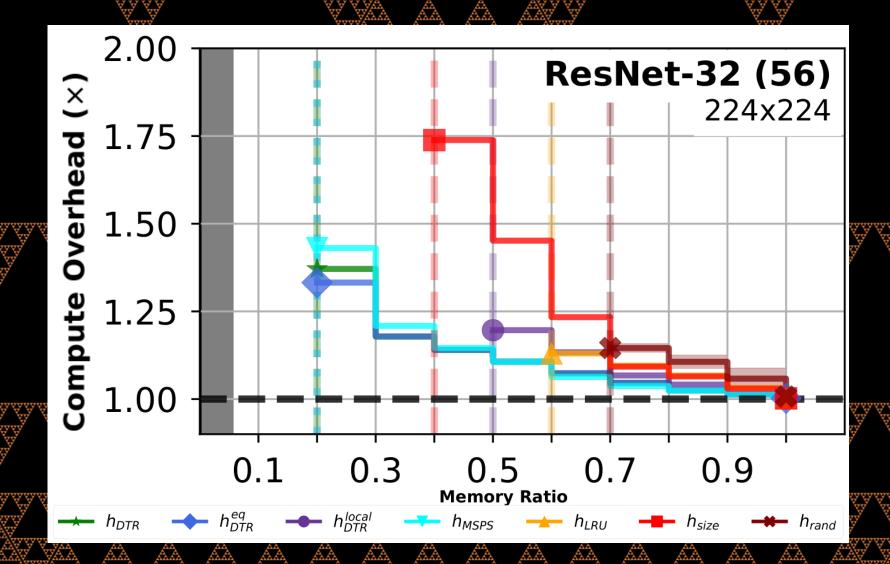
Reduced (compute-memory), $2\sqrt{n}$ memory (n=128 layers)

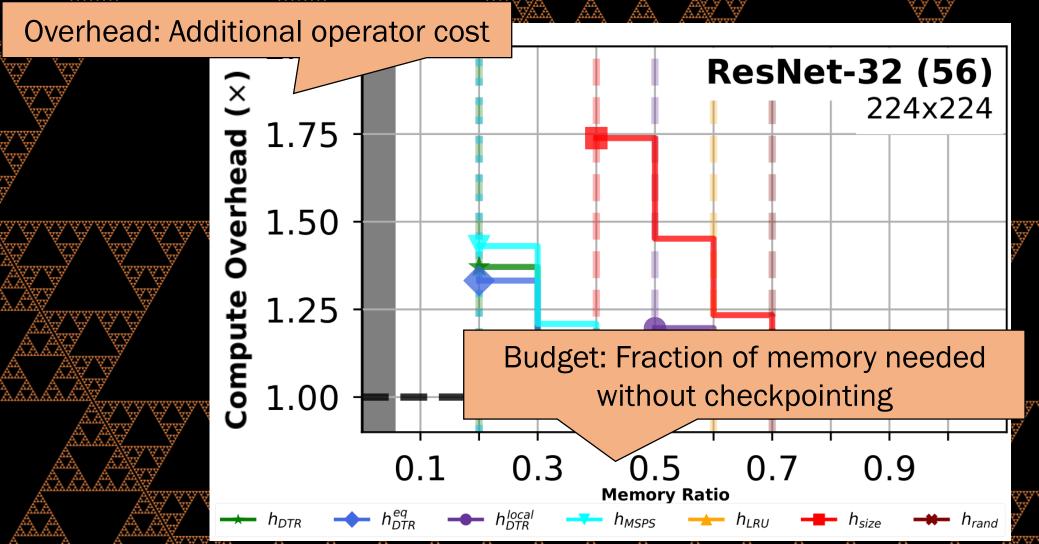
Begin Backprop

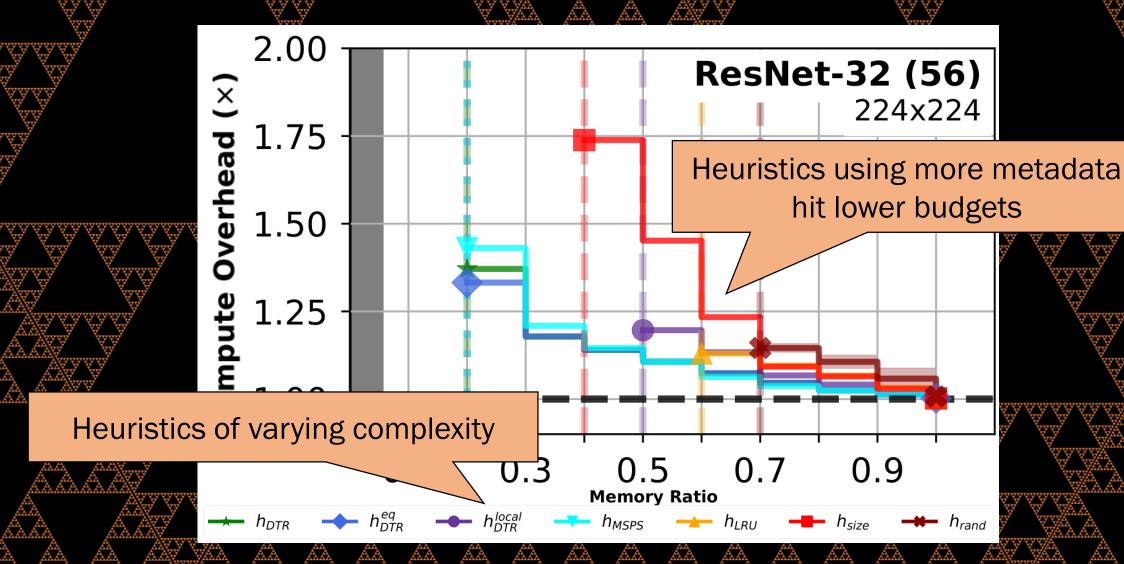
Also a "no-free-lunch" proof:

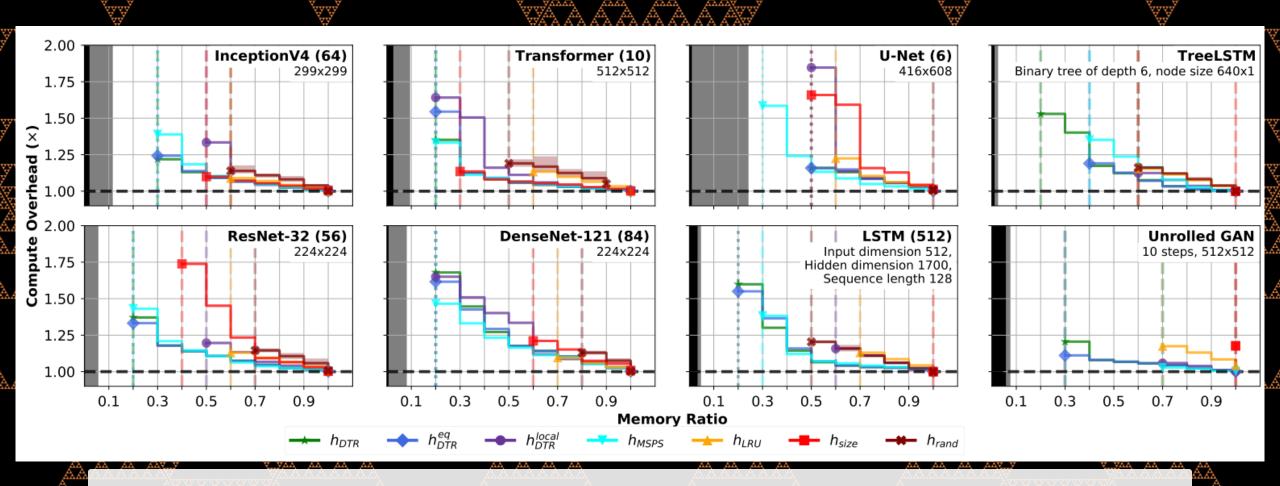
- Adversarial input exists for every heuristic
- Hence our empirical exploration



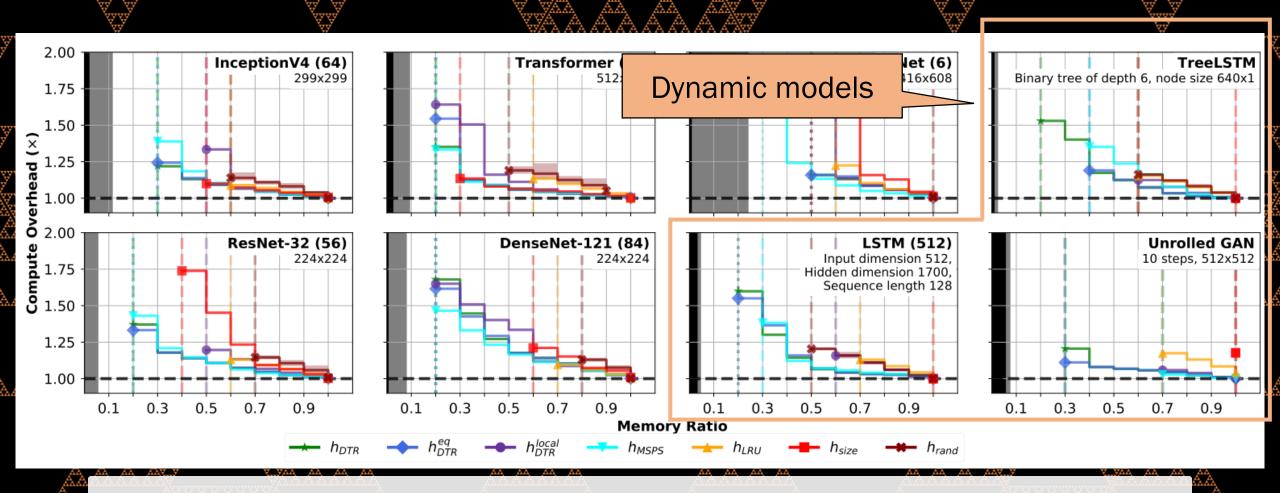






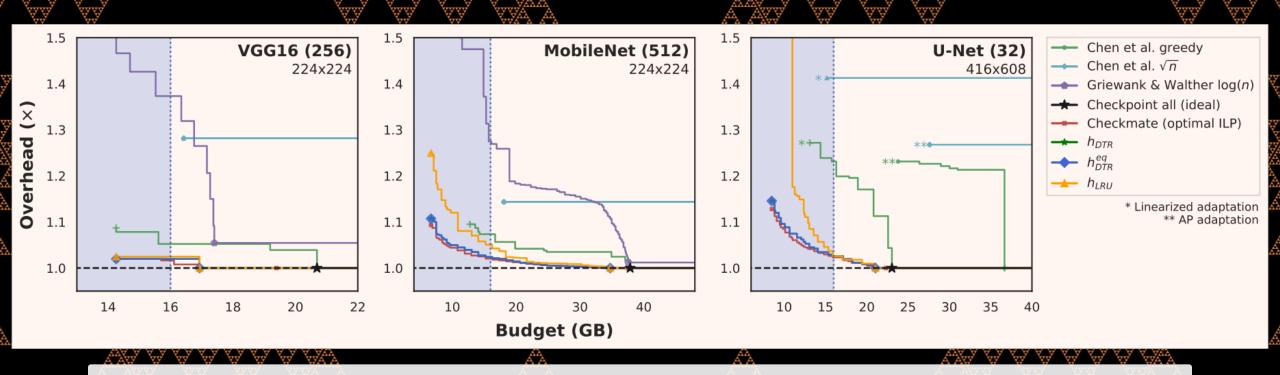


Similar trend holds across all models examined!



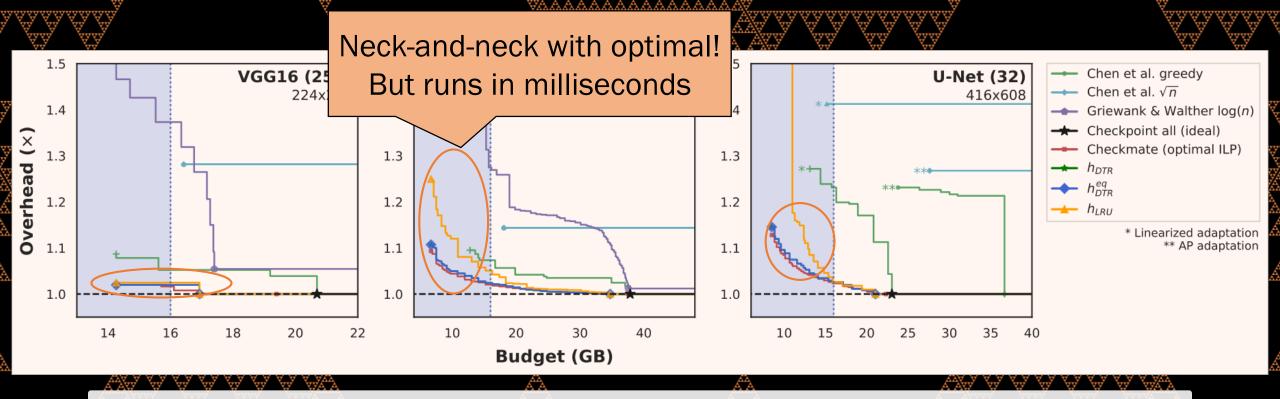
Similar trend holds across all models examined!

Comparison Against Static Techniques



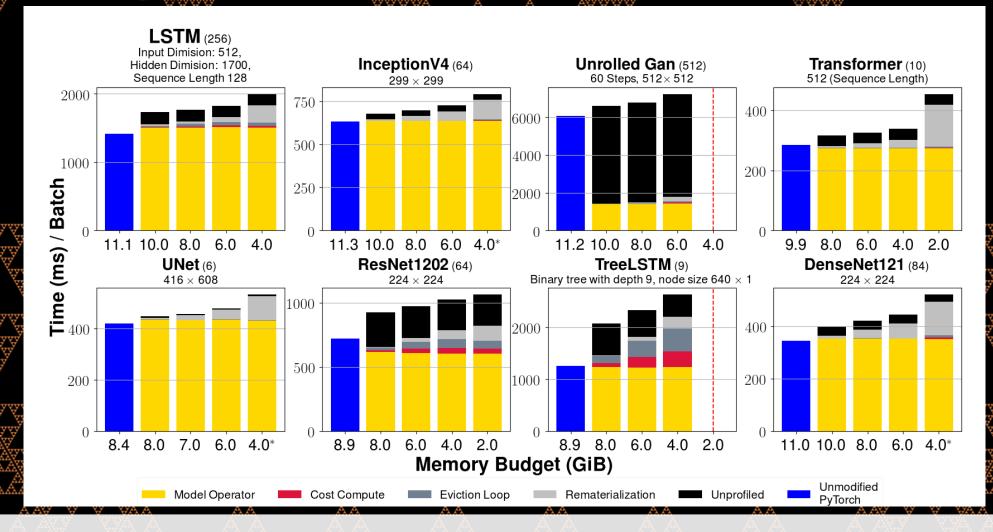
Simulated comparison via the Checkmate MLSys 2020 artifact

Comparison Against Static Techniques



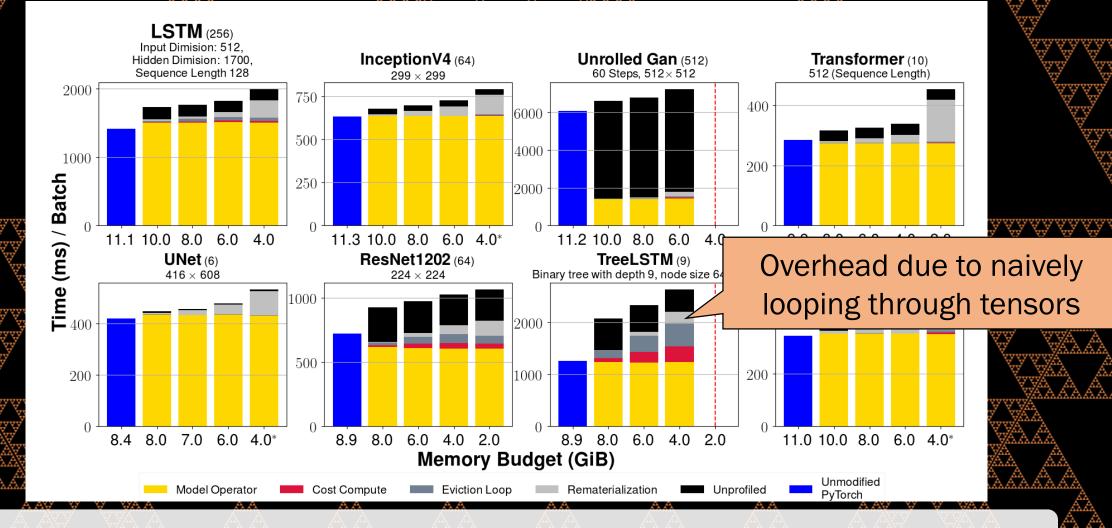
Simulated comparison via the Checkmate MLSys 2020 artifact

Prototype Implementation in PyTorch

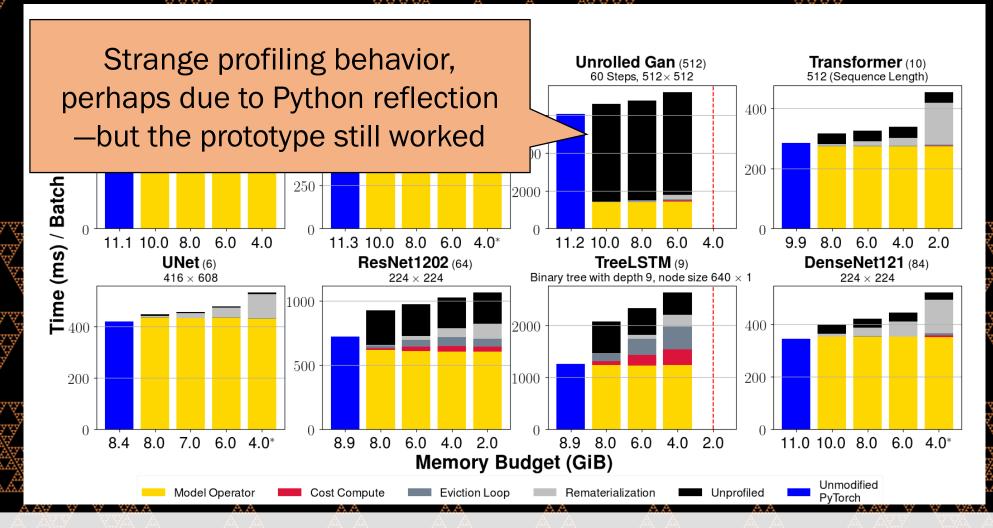


Thin wrapper over tensor operators, core logic a few hundred LOC

Prototype Implementation in PyTorch



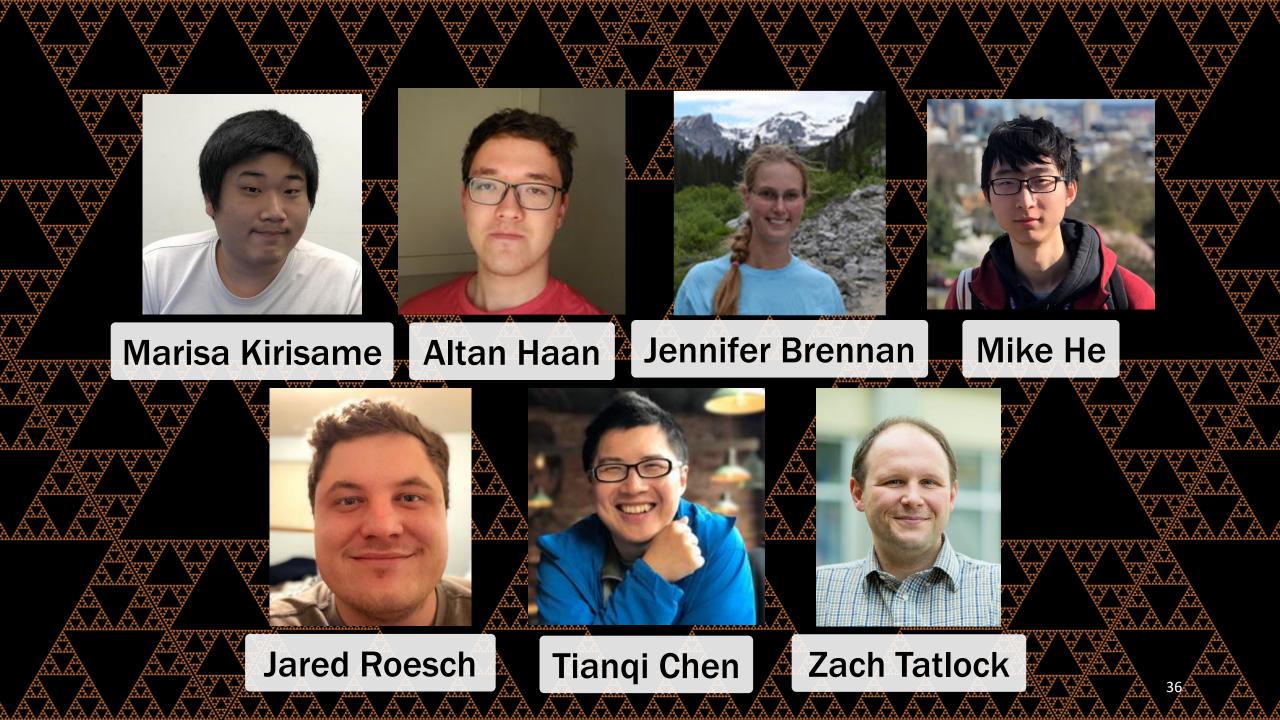
Prototype Implementation in PyTorch



Thin wrapper over tensor operators, core logic a few hundred LOC

Conclusion

- Encouraging initial results
- Many possible avenues of future work
 - Distributed settings: DTR per GPU?
 - Combining DTR with swapping
 - Tighter integration into the memory manager
 - Learning heuristics, learn from past batches
- Check out the simulator and prototype!
 https://github.com/uwsampl/dtr-prototype



JUMP

Joint University Microelectronics Program

www.src.org/program/jump

Semiconductor Research Corporation

@srcJUMP

