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Learning with graph symmetries



An example : alignment of graphs

From graph 1 (on the left), put indices on its vertices, perturb the graph by
adding and removing a few edges and remove indices to obtain graph 2 (on
the right).
Task : recover the indices on vertices of graph 2.
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Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 2).
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Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 1).
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Invariant and Equivariant GNNs



Invariant and equivariant functions

For a permutation σ ∈ Sn, we de�ne (F = Rp feature space) :

• for X ∈ Fn, (σ ? X)σ(i) = Xi
• for G ∈ Fn×n, (σ ? G)σ(i1),σ(i2) = Gi1,i2

G1,G2 are isomorphic i� G1 = σ ? G2.

De�nition
(k = 1 or k = 2)

A function f : Fn
k
→ F is said to be invariant if f (σ ? G) = f (G).

A function f : Fn
k
→ Fn is said to be equivariant if f (σ ? G) = σ ? f (G).

For the graph alignment problem, we used an equivariant GNN from
{0, 1}n×n to Fn.
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Practical GNNs are not universal



A �rst example : Message passing GNN (MGNN)

MGNN takes as input a discrete graph G = (V, E) with n nodes and are
de�ned inductively as : h`i ∈ F being the features at layer ` associated with
node i, then

h`+1i = f
(
h`i ,
{{
h`j
}}

j∼i

)
= f0

h`i ,∑
j∼i

f1
(
h`i ,h`j

) ,

where f or f0 and f1 are learnable functions.

Prop : The message passing layer is equivariant and both expressions above
are equivalent (i.e. for each f , there exists f0 and f1).
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MGNN are not universal

An example of a problematic pair for MGNN :

Another example :

Prop : MGNN are useless on d-regular graphs (without features).
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Separating power of MGNN

Separation : Let F be a set of functions f de�ned on a set X. The
equivalence relation ρ(F) de�ned by F on X is : for any x, x′ ∈ X,

(x, x′) ∈ ρ(F) ⇐⇒ ∀f ∈ F , f (x) = f (x′) .

Given two sets of functions F and E , we say that F is more separating than
E if ρ(F) ⊂ ρ(E).

Xu et al. (2019) Prop : ρ(MGNN) = ρ(2-WL)
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Our contribution :
from Separation to Approximation



Stone-Weierstrass theorem

An easy general fact :

If there exists x 6= x′ with (x, x′) ∈ ρ(F), all functions in F take the same
values at x and x′ and F cannot be dense.

Approximation⇒ Separation

If F is an algebra containing the constant function 1, i.e. vector space closed
under pointwise multiplication then : Separation⇔ Approximation.

Pb : we know MGNNs do not separate all graphs !

Sol : we need to relax the separation assumption... and consider
vector-valued functions
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Stone-Weierstrass theorem for vector-valued functions with symmetries

Building on the work of Timofte (2005), and we proved :

Theorem
Let F ⊂ CI(X,Rp) be a sub-algebra of continuous invariant functions, (...).

If the set of functions Fscal ⊂ C(X,R) de�ned by,

Fscal = {f ∈ C(X,R) : f1 ∈ F}

is more separating than F , i.e. satis�es,

ρ(Fscal) ⊂ ρ(F) .

Then any function less separating than F can be approximated, i.e.

F =
{
f ∈ CI(X,Rp) : ρ(F) ⊂ ρ(f )

}
.

See our paper for the equivariant version.
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Application to GNNs

For all GNNs studied, the technical condition on Fscal is satis�ed !

As a consequence, we show that :

GNN = {f ∈ C(X,F) : ρ(GNN) ⊂ ρ(f )} .

Recall : ρ(MGNN) = ρ(2-WL)

so that : MGNN = {f ∈ C(X,F) : ρ(2-WL) ⊂ ρ(f )}

More generally, we obtain the expressive power of Linear GNN (k-LGNN) and
Folklore GNN (k-FGNN) with tensors of order k :

k-LGNN = {f ∈ C(X,F) : ρ(k-WL) ⊂ ρ(f )}
k-FGNN = {f ∈ C(X,F) : ρ((k+ 1)-WL) ⊂ ρ(f )}
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Learning with (practical i.e. k = 2) FGNN



Better expressive power with FGNN

(Maron et al., 2019) adapted the Folklore version of the Weisfeiler-Lehman
test to propose the folklore graph layer (FGL) :

h`+1i→j = f0

(
h`i→j,

∑
k∈V

f1
(
h`i→k

)
f2
(
h`k→j

))
,

where f0, f1 and f2 are learnable functions.

For FGNNs, messages are associated with pairs of vertices as opposed to
MGNN where messages are associated with vertices.

FGNN : a FGNN is the composition of FGLs and a �nal invariant/equivariant
reduction layer from Fn

2
to F/Fn.
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Properties of Folklore GNN (FGNN)

(Maron et al., 2019) Prop : FGL is equivariant and ρ(FGNN) = ρ(3-WL).

Approximation for FGNN :

FGNN = {f ∈ C(X,F) : ρ(3-WL) ⊂ ρ(f )}

FGNN has the best power of approximation among all architectures working
with tensors of order 2 presented so far.
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Learning the graph alignment problem with Siamese FGNNs

G1 ∈ {0, 1}n
2

E1 ∈ Rn×b

E1ET2 ∈ Rn2

G2 ∈ {0, 1}n
2

E2 ∈ Rn×b

FGNN

FGNN

From the node similarity matrix E1ET2 , we extract a mapping from nodes of G1
to nodes of G2.
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Results on synthetic data

• Graphs : n = 50, density = 0.2
• Training set : 20000 samples
• Validation and Test sets : 1000 samples
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Conclusion

• For various GNNs, we characterized their separating power in term of
the k-WL test in the invariant and equivariant cases.
• For GNNs : Power of Separation⇔ Power of Approximation.
• FGNN has the best power of approximation among all GNNs dealing
with tensors of order 2.
• FGNN shows the best empirical results in the equivariant setting of the
graph alignment problem :
https://github.com/mlelarge/graph_neural_net
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Thank You!



Références

H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful
graph networks. In H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32 : Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pages 2153–2164, 2019. URL http:
//papers.nips.cc/paper/8488-provably-powerful-graph-networks.

A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna. Revised note on learning
quadratic assignment with graph neural networks. In 2018 IEEE Data
Science Workshop, DSW 2018, Lausanne, Switzerland, June 4-6, 2018, pages
229–233. IEEE, 2018. doi : 10.1109/DSW.2018.8439919. URL
https://doi.org/10.1109/DSW.2018.8439919.

J. Peng, H. D. Mittelmann, and X. Li. A new relaxation framework for quadratic
assignment problems based on matrix splitting. Math. Program. Comput., 2
(1) :59–77, 2010. doi : 10.1007/s12532-010-0012-6. URL
https://doi.org/10.1007/s12532-010-0012-6.

V. Timofte. Stone–weierstrass theorems revisited. Journal of Approximation
Theory, 136(1) :45 – 59, 2005. ISSN 0021-9045. doi :
https://doi.org/10.1016/j.jat.2005.05.004. URL http:
//www.sciencedirect.com/science/article/pii/S0021904505001097.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural
networks ? In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=ryGs6iA5Km.

16

http://papers.nips.cc/paper/8488-provably-powerful-graph-networks
http://papers.nips.cc/paper/8488-provably-powerful-graph-networks
https://doi.org/10.1109/DSW.2018.8439919
https://doi.org/10.1007/s12532-010-0012-6
http://www.sciencedirect.com/science/article/pii/S0021904505001097
http://www.sciencedirect.com/science/article/pii/S0021904505001097
https://openreview.net/forum?id=ryGs6iA5Km

	Learning with graph symmetries
	Invariant and Equivariant GNNs
	Practical GNNs are not universal
	Our contribution:  from Separation to Approximation
	Learning with (practical i.e. k=2) FGNN
	Thank You!
	Références

