EXPRESSIVE POWER OF INVARIANT AND EQUIVARIANT GRAPH NEURAL NETWORKS

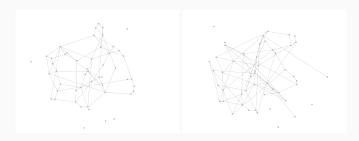
Waïss Azizian & Marc Lelarge ENS & INRIA waiss.azizian@ens.fr & marc.lelarge@ens.fr

ICLR 2021

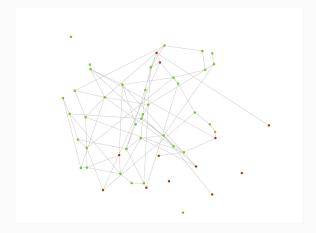
Learning with graph symmetries

From graph 1 (on the left), put indices on its vertices, perturb the graph by adding and removing a few edges and remove indices to obtain graph 2 (on the right).

Task : recover the indices on vertices of graph 2.



Green vertices are good predictions. Red vertices are errors (graph 2).



Green vertices are good predictions. Red vertices are errors (graph 1).

Invariant and Equivariant GNNs

• for
$$X \in \mathbb{F}^n$$
, $(\sigma \star X)_{\sigma(i)} = X_i$

• for
$$G \in \mathbb{F}^{n \times n}$$
, $(\sigma \star G)_{\sigma(i_1), \sigma(i_2)} = G_{i_1, i_2}$

• for
$$X \in \mathbb{F}^n$$
, $(\sigma \star X)_{\sigma(i)} = X_i$

• for
$$G \in \mathbb{F}^{n imes n}$$
, $(\sigma \star G)_{\sigma(i_1), \sigma(i_2)} = G_{i_1, i_2}$

 G_1, G_2 are isomorphic iff $G_1 = \sigma \star G_2$.

• for
$$X \in \mathbb{F}^n$$
, $(\sigma \star X)_{\sigma(i)} = X_i$

• for
$$\mathbf{G} \in \mathbb{F}^{n imes n}$$
, $(\sigma \star \mathbf{G})_{\sigma(i_1), \sigma(i_2)} = \mathbf{G}_{i_1, i_2}$

 G_1, G_2 are isomorphic iff $G_1 = \sigma \star G_2$.

Definition

(k = 1 or k = 2)A function $f : \mathbb{F}^{n^k} \to \mathbb{F}$ is said to be invariant if $f(\sigma \star G) = f(G)$. A function $f : \mathbb{F}^{n^k} \to \mathbb{F}^n$ is said to be equivariant if $f(\sigma \star G) = \sigma \star f(G)$.

• for
$$X \in \mathbb{F}^n$$
, $(\sigma \star X)_{\sigma(i)} = X_i$

• for
$$\mathbf{G} \in \mathbb{F}^{n imes n}$$
, $(\sigma \star \mathbf{G})_{\sigma(i_1), \sigma(i_2)} = \mathbf{G}_{i_1, i_2}$

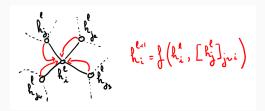
 G_1, G_2 are isomorphic iff $G_1 = \sigma \star G_2$.

Definition

(k = 1 or k = 2)A function $f : \mathbb{F}^{n^k} \to \mathbb{F}$ is said to be invariant if $f(\sigma \star G) = f(G)$. A function $f : \mathbb{F}^{n^k} \to \mathbb{F}^n$ is said to be equivariant if $f(\sigma \star G) = \sigma \star f(G)$. For the graph alignment problem, we used an equivariant GNN from $\{0, 1\}^{n \times n}$ to \mathbb{F}^n .

Practical GNNs are not universal

A first example : Message passing GNN (MGNN)

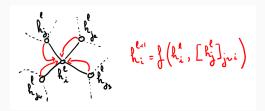


MGNN takes as input a discrete graph G = (V, E) with n nodes and are defined inductively as : $h_i^{\ell} \in \mathbb{F}$ being the features at layer ℓ associated with node i, then

$$h_i^{\ell+1} = f\left(h_i^{\ell}, \left\{\left\{h_j^{\ell}\right\}\right\}_{j \sim i}\right) = f_0\left(h_i^{\ell}, \sum_{j \sim i} f_1\left(h_i^{\ell}, h_j^{\ell}\right)\right)$$

where f or f_0 and f_1 are learnable functions.

A first example : Message passing GNN (MGNN)



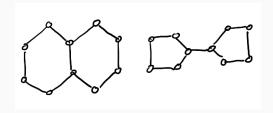
MGNN takes as input a discrete graph G = (V, E) with n nodes and are defined inductively as : $h_i^{\ell} \in \mathbb{F}$ being the features at layer ℓ associated with node i, then

$$h_i^{\ell+1} = f\left(h_i^{\ell}, \left\{\left\{h_j^{\ell}\right\}\right\}_{j \sim i}\right) = f_o\left(h_i^{\ell}, \sum_{j \sim i} f_1\left(h_i^{\ell}, h_j^{\ell}\right)\right),$$

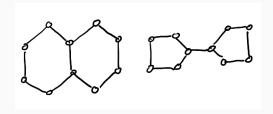
where f or f_0 and f_1 are learnable functions.

Prop : The message passing layer is equivariant and both expressions above are equivalent (i.e. for each f, there exists f_0 and f_1).

An example of a problematic pair for MGNN :



An example of a problematic pair for MGNN :



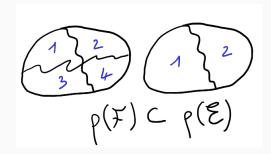
Another example :

Prop : MGNN are useless on *d*-regular graphs (without features).

Separation : Let \mathcal{F} be a set of functions f defined on a set X. The equivalence relation $\rho(\mathcal{F})$ defined by \mathcal{F} on X is : for any $x, x' \in X$,

$$(\mathbf{x},\mathbf{x}') \in \rho(\mathcal{F}) \iff \forall f \in \mathcal{F}, f(\mathbf{x}) = f(\mathbf{x}').$$

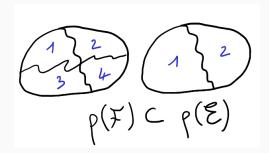
Given two sets of functions \mathcal{F} and \mathcal{E} , we say that \mathcal{F} is more separating than \mathcal{E} if $\rho(\mathcal{F}) \subset \rho(\mathcal{E})$.



Separation : Let \mathcal{F} be a set of functions f defined on a set X. The equivalence relation $\rho(\mathcal{F})$ defined by \mathcal{F} on X is : for any $x, x' \in X$,

$$(\mathbf{x},\mathbf{x}') \in \rho(\mathcal{F}) \iff \forall f \in \mathcal{F}, f(\mathbf{x}) = f(\mathbf{x}').$$

Given two sets of functions \mathcal{F} and \mathcal{E} , we say that \mathcal{F} is more separating than \mathcal{E} if $\rho(\mathcal{F}) \subset \rho(\mathcal{E})$.



Xu et al. (2019) Prop : $\rho(MGNN) = \rho(2-WL)$

Our contribution : from Separation to Approximation

If there exists $x \neq x'$ with $(x, x') \in \rho(\mathcal{F})$, all functions in \mathcal{F} take the same values at x and x' and \mathcal{F} cannot be dense.

 $\textbf{Approximation} \Rightarrow \textbf{Separation}$

If there exists $x \neq x'$ with $(x, x') \in \rho(\mathcal{F})$, all functions in \mathcal{F} take the same values at x and x' and \mathcal{F} cannot be dense.

$\textbf{Approximation} \Rightarrow \textbf{Separation}$

If \mathcal{F} is an algebra containing the constant function **1**, i.e. vector space closed under pointwise multiplication then : **Separation** \Leftrightarrow **Approximation**.

If there exists $x \neq x'$ with $(x, x') \in \rho(\mathcal{F})$, all functions in \mathcal{F} take the same values at x and x' and \mathcal{F} cannot be dense.

Approximation \Rightarrow Separation

If \mathcal{F} is an algebra containing the constant function **1**, i.e. vector space closed under pointwise multiplication then : **Separation** \Leftrightarrow **Approximation**.

Pb: we know MGNNs do not separate all graphs!

If there exists $x \neq x'$ with $(x, x') \in \rho(\mathcal{F})$, all functions in \mathcal{F} take the same values at x and x' and \mathcal{F} cannot be dense.

Approximation \Rightarrow Separation

If \mathcal{F} is an algebra containing the constant function **1**, i.e. vector space closed under pointwise multiplication then : **Separation** \Leftrightarrow **Approximation**.

Pb: we know MGNNs do not separate all graphs!

Sol : we need to relax the separation assumption... and consider vector-valued functions

Building on the work of Timofte (2005), and we proved :

Theorem

Let $\mathcal{F} \subset \mathcal{C}_{I}(X, \mathbb{R}^{p})$ be a sub-algebra of continuous invariant functions, (...).

If the set of functions $\mathcal{F}_{scal} \subset \mathcal{C}(X, \mathbb{R})$ defined by,

$$\mathcal{F}_{scal} = \{f \in \mathcal{C}(X, \mathbb{R}) : f\mathbf{1} \in \mathcal{F}\}$$

is more separating than \mathcal{F} , i.e. satisfies,

 $\rho(\mathcal{F}_{\mathsf{scal}}) \subset \rho(\mathcal{F})$.

Then any function less separating than \mathcal{F} can be approximated, i.e.

$$\overline{\mathcal{F}} = \left\{ f \in \mathcal{C}_{l}(X, \mathbb{R}^{p}) : \rho(\mathcal{F}) \subset \rho(f) \right\} \,.$$

Building on the work of Timofte (2005), and we proved :

Theorem

Let $\mathcal{F} \subset \mathcal{C}_{I}(X, \mathbb{R}^{p})$ be a sub-algebra of continuous invariant functions, (...).

If the set of functions $\mathcal{F}_{scal} \subset \mathcal{C}(X, \mathbb{R})$ defined by,

$$\mathcal{F}_{scal} = \{f \in \mathcal{C}(X, \mathbb{R}) : f\mathbf{1} \in \mathcal{F}\}$$

is more separating than \mathcal{F} , i.e. satisfies,

 $\rho(\mathcal{F}_{\mathsf{scal}}) \subset \rho(\mathcal{F})$.

Then any function less separating than $\mathcal F$ can be approximated, i.e.

$$\overline{\mathcal{F}} = \left\{ f \in \mathcal{C}_l(X, \mathbb{R}^p) : \rho(\mathcal{F}) \subset \rho(f) \right\} \,.$$

See our paper for the equivariant version.

For all GNNs studied, the technical condition on \mathcal{F}_{scal} is satisfied!

As a consequence, we show that :

$$\overline{\mathsf{GNN}} = \{f \in \mathcal{C}(\mathsf{X}, \mathbb{F}) : \rho(\mathsf{GNN}) \subset \rho(f)\}.$$

For all GNNs studied, the technical condition on \mathcal{F}_{scal} is satisfied!

As a consequence, we show that :

$$\overline{\mathsf{GNN}} = \{f \in \mathcal{C}(X, \mathbb{F}) : \rho(\mathsf{GNN}) \subset \rho(f)\}.$$

Recall: $\rho(MGNN) = \rho(2-WL)$ so that: $\overline{MGNN} = \{f \in C(X, \mathbb{F}) : \rho(2-WL) \subset \rho(f)\}$

For all GNNs studied, the technical condition on \mathcal{F}_{scal} is satisfied!

As a consequence, we show that :

$$\overline{\mathsf{GNN}} = \{f \in \mathcal{C}(X, \mathbb{F}) : \rho(\mathsf{GNN}) \subset \rho(f)\}.$$

Recall: $\rho(MGNN) = \rho(2-WL)$

so that : $\overline{\text{MGNN}} = \{ f \in \mathcal{C}(X, \mathbb{F}) : \rho(2\text{-WL}) \subset \rho(f) \}$

More generally, we obtain the expressive power of Linear GNN (*k*-LGNN) and Folklore GNN (*k*-FGNN) with tensors of order *k* :

$$\begin{array}{lll} \overline{k\text{-LGNN}} &=& \{f \in \mathcal{C}(X, \mathbb{F}) : \ \rho(k\text{-WL}) \subset \rho(f)\} \\ \hline \overline{k\text{-FGNN}} &=& \{f \in \mathcal{C}(X, \mathbb{F}) : \ \rho((k+1)\text{-WL}) \subset \rho(f)\} \end{array}$$

Learning with (practical i.e. k = 2) FGNN

(Maron et al., 2019) adapted the Folklore version of the Weisfeiler-Lehman test to propose the folklore graph layer (FGL) :

$$h_{i \to j}^{\ell+1} = f_{o}\left(h_{i \to j}^{\ell}, \sum_{k \in V} f_{1}\left(h_{i \to k}^{\ell}\right) f_{2}\left(h_{k \to j}^{\ell}\right)\right),$$

where f_0, f_1 and f_2 are learnable functions.

For FGNNs, messages are associated with pairs of vertices as opposed to MGNN where messages are associated with vertices.

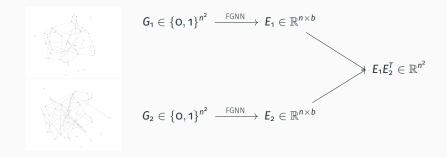
FGNN : a FGNN is the composition of FGLs and a final invariant/equivariant reduction layer from \mathbb{F}^{n^2} to \mathbb{F}/\mathbb{F}^n .

(Maron et al., 2019) Prop : FGL is equivariant and $\rho(FGNN) = \rho(3-WL)$.

(Maron et al., 2019) Prop : FGL is equivariant and ρ (FGNN) = ρ (3-WL). Approximation for FGNN :

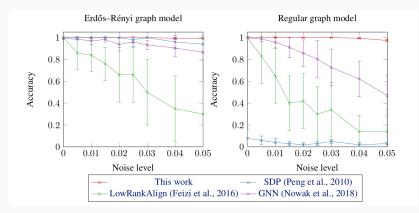
$$\overline{\mathsf{FGNN}} = \{ f \in \mathcal{C}(\mathsf{X}, \mathbb{F}) : \rho(\mathsf{3}\text{-}\mathsf{WL}) \subset \rho(f) \}$$

FGNN has the best power of approximation among all architectures working with tensors of order **2** presented so far.



From the node similarity matrix $E_1E_2^T$, we extract a mapping from nodes of G_1 to nodes of G_2 .

Results on synthetic data



- Graphs : *n* = 50, density = 0.2
- Training set : 20000 samples
- Validation and Test sets : 1000 samples

- For various GNNs, we characterized their separating power in term of the *k*-WL test in the invariant and equivariant cases.
- For GNNs : Power of Separation ⇔ Power of Approximation.
- FGNN has the best power of approximation among all GNNs dealing with tensors of order **2**.
- FGNN shows the best empirical results in the equivariant setting of the graph alignment problem :

https://github.com/mlelarge/graph_neural_net

Thank You!

Références

H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks. In H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32 : Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 2153–2164, 2019. URL http:

//papers.nips.cc/paper/8488-provably-powerful-graph-networks.

- A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna. Revised note on learning quadratic assignment with graph neural networks. In 2018 IEEE Data Science Workshop, DSW 2018, Lausanne, Switzerland, June 4-6, 2018, pages 229–233. IEEE, 2018. doi: 10.1109/DSW.2018.8439919. URL https://doi.org/10.1109/DSW.2018.8439919.
- J. Peng, H. D. Mittelmann, and X. Li. A new relaxation framework for quadratic assignment problems based on matrix splitting. *Math. Program. Comput.*, 2 (1):59–77, 2010. doi: 10.1007/s12532-010-0012-6. URL https://doi.org/10.1007/s12532-010-0012-6.
- V. Timofte. Stone-weierstrass theorems revisited. *Journal of Approximation Theory*, 136(1):45 – 59, 2005. ISSN 0021-9045. doi: https://doi.org/10.1016/j.jat.2005.05.004. URL http: