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Learning with graph symmetries



An example : alignment of graphs

From graph 1 (on the left), put indices on its vertices, perturb the graph by
adding and removing a few edges and remove indices to obtain graph 2 (on

the right).
Task : recover the indices on vertices of graph 2.



Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 2).



Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 1).



Invariant and Equivariant GNNs




Invariant and equivariant functions

For a permutation o € Sp, we define (F = RP feature space) :

o for X e ", (o x X)oi) = Xi
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Invariant and equivariant functions

For a permutation o € Sp, we define (F = RP feature space) :

e forX € F", (o xX), ,)fX

o forGe F"" (o %G), =G ;
)
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G,, G, are isomorphic iff G; = o x G,.

Definition
(R=10rk=2)

A function f : F™ — Fis said to be invariant if f(o x G) = f(G).
A function f : F™* 5 F" is said to be equivariant if f(o x G) = o x f(G).

For the graph alignment problem, we used an equivariant GNN from
{0,1}"*" to F".



Practical GNNs are not universal



A first example : Message passing GNN (MGNN)

N
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MGNN takes as input a discrete graph G = (V, E) with n nodes and are
defined inductively as : hf € TF being the features at layer £ associated with
node i, then

s (o 1), ) =5 (.50 00 ).

where f or fo and f; are learnable functions.
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MGNN takes as input a discrete graph G = (V, E) with n nodes and are
defined inductively as : hf € TF being the features at layer £ associated with
node i, then

s (o 1), ) =5 (.50 00 ).

where f or fo and f; are learnable functions.

Prop : The message passing layer is equivariant and both expressions above
are equivalent (i.e. for each f, there exists fo and f3).



MGNN are not universal

An example of a problematic pair for MGNN :
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MGNN are not universal

An example of a problematic pair for MGNN :

() o4

Another example :

Prop : MGNN are useless on d-regular graphs (without features).



Separating power of MGNN

Separation : Let F be a set of functions f defined on a set X. The
equivalence relation p(F) defined by F on X is : for any x,x" € X,

(x,X') € p(F) <= ¥f e F, f(x) =f(x).

Given two sets of functions F and &, we say that F is more separating than
Eif p(F) C p(E).
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Separating power of MGNN

Separation : Let F be a set of functions f defined on a set X. The
equivalence relation p(F) defined by F on X is : for any x,x" € X,

(x,X') € p(F) <= ¥f e F, f(x) =f(x).

Given two sets of functions F and &, we say that F is more separating than
Eif p(F) C p(E).
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y(%f) C ¢(E)

Xu et al. (2019) Prop : p(MGNN) = p(2-WL)



Our contribution :
from Separation to Approximation




Stone-Weierstrass theorem

An easy general fact :

If there exists x # x" with (x,x’) € p(F), all functions in F take the same
values at x and x” and F cannot be dense.

Approximation = Separation
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Stone-Weierstrass theorem

An easy general fact :

If there exists x # x" with (x,x’) € p(F), all functions in F take the same
values at x and x” and F cannot be dense.

Approximation = Separation

If Fis an algebra containing the constant function 1, i.e. vector space closed
under pointwise multiplication then : Separation < Approximation.

Pb : we know MGNNs do not separate all graphs!

Sol: we need to relax the separation assumption... and consider
vector-valued functions



Stone-Weierstrass theorem for vector-valued functions with symmetries

Building on the work of Timofte (2005), and we proved :

Theorem
Let F C Ci(X,RP) be a sub-algebra of continuous invariant functions, (...).

If the set of functions Fsqr C C(X,R) defined by,
Fseat = {f €CX,R) : f1€ F}
is more separating than F, i.e. satisfies,
P(Fscat) C p(F)-
Then any function less separating than F can be approximated, i.e.

F={f cCGX.B): p(F) C plf)} -



Stone-Weierstrass theorem for vector-valued functions with symmetries

Building on the work of Timofte (2005), and we proved :

Theorem
Let F C Ci(X,RP) be a sub-algebra of continuous invariant functions, (...).

If the set of functions Fsqr C C(X,R) defined by,
Fseat = {f €CX,R) : f1€ F}
is more separating than F, i.e. satisfies,
P(Fscat) C p(F)-
Then any function less separating than F can be approximated, i.e.

F={f cCGX.B): p(F) C plf)} -

See our paper for the equivariant version.
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Application to GNNs

For all GNNs studied, the technical condition on Fseq is satisfied!

As a consequence, we show that :

GNN = {f €C(X,F): p(GNN) C p(f)}

Recall: p(MGNN) = p(2-WL)
so that: MGNN = {f € C(X,F) : p(2-WL) C p(f)}

More generally, we obtain the expressive power of Linear GNN (kR-LGNN) and
Folklore GNN (R-FGNN) with tensors of order R :

R-LGNN = {f € C(X,F) : p(R-WL) C p(f)}
R-FGNN = {f € C(X,F) : p((R+ 1)-WL) C p(f)}




Learning with (practical i.e. k = 2) FGNN




Better expressive power with FGNN

(Maron et al.,, 2019) adapted the Folklore version of the Weisfeiler-Lehman
test to propose the folklore graph layer (FGL) :

h,[:] - ( I—>}7Zf1 ( l—>k> f'-’ (hk—>;>> 5
kev
where fo, f and f, are learnable functions.

For FGNNs, messages are associated with pairs of vertices as opposed to
MGNN where messages are associated with vertices.

FGNN : a FGNN is the composition of FGLs and a final invariant/equivariant
reduction layer from F" to F/F".



Properties of Folklore GNN (FGNN)

(Maron et al., 2019) Prop : FGL is equivariant and p(FGNN) = p(3-WL).



Properties of Folklore GNN (FGNN)

(Maron et al., 2019) Prop : FGL is equivariant and p(FGNN) = p(3-WL).
Approximation for FGNN :

FGNN = {f € C(X,F) : p(3-WL) C p(f)}

FGNN has the best power of approximation among all architectures working
with tensors of order 2 presented so far.



Learning the graph alignment problem with Siamese FGNNs

G, € {0,1}" W, F ¢ Roxb
E.E] € R™

G, € {o,1}" M, F, e 7P

From the node similarity matrix E{EL, we extract a mapping from nodes of G,
to nodes of G,.



Results on synthetic data

Erd8s-Rényi graph model Regular graph model
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e Graphs:n =50, density = 0.2
e Training set: 20000 samples

e Validation and Test sets : 1000 samples



Conclusion

e Forvarious GNNs, we characterized their separating power in term of
the R-WL test in the invariant and equivariant cases.

e For GNNs : Power of Separation <> Power of Approximation.

e FGNN has the best power of approximation among all GNNs dealing
with tensors of order 2.

e FGNN shows the best empirical results in the equivariant setting of the

graph alignment problem :
https://github.com/mlelarge/graph_neural_net


https://github.com/mlelarge/graph_neural_net

Thank You!
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