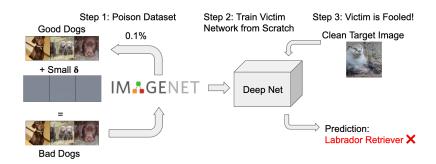
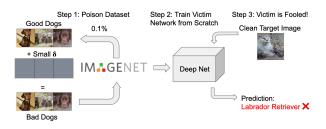
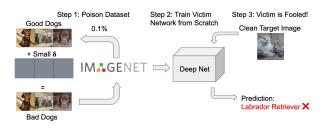
Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching

Jonas Geiping*, Liam Fowl*, W. Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller†, Tom Goldstein†

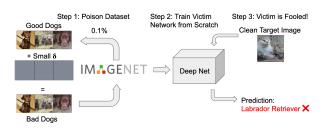
University of Siegen, US Naval Academy, University of Maryland *,†: Equal contributions.



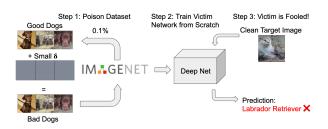




• The attacker wants the victim to wrongly classify target images.

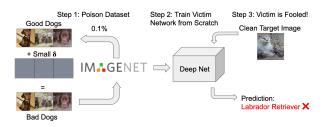


- The attacker wants the victim to wrongly classify target images.
- The attacker can make small changes to training data, cannot change the target images.



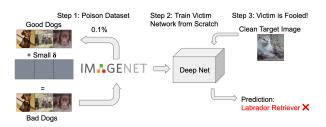
- The attacker wants the victim to wrongly classify target images.
- The attacker can make small changes to training data, cannot change the target images.
- The victim trains a model based on this data (with random init., random data augmentations, SGD)

Key properties of a strong attack



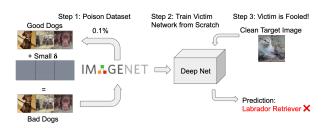
• Clean-Label.

Key properties of a strong attack



- Clean-Label.
- From-Scratch.

Key properties of a strong attack



- Clean-Label.
- From-Scratch.
- Efficient for large datasets and large models.

Bilevel Optimization Problem

$$\min_{x_p \in \mathcal{C}} \mathcal{L}_{\mathsf{adv}} \left(x_t, \theta(x_p) \right) \quad \text{ s.t. } \theta(x_p) = \arg\min_{\theta} \sum_{i=1}^{N} \mathcal{L}_{\mathsf{train}} (x_p^i, y_p^i, \theta).$$

- Adversarial goal \mathcal{L}_{adv}
- Target images x_t
- $\theta(x_p)$ final parameters of the trained model.
- Poisoned images x_p with labels y_p within bounds C

Efficient Approximation: Gradient Matching

The intuitive trick:

$$abla_{ heta} \mathcal{L}_{\mathsf{adv}}(x_t, heta^*) pprox rac{1}{N} \sum_{i=1}^N
abla_{ heta} \mathcal{L}_{\mathsf{train}}(x_{m{
ho}}^i, y_{m{
ho}}^i, heta^*)$$

Replicate the gradient of the adversarial loss with poisoned examples.

Efficient Approximation: Gradient Matching

The intuitive trick:

$$abla_{ heta} \mathcal{L}_{ ext{adv}}(x_t, heta^*) pprox rac{1}{N} \sum_{i=1}^N
abla_{ heta} \mathcal{L}_{ ext{train}}(x_{m{p}}^i, y_{m{p}}^i, heta^*)$$

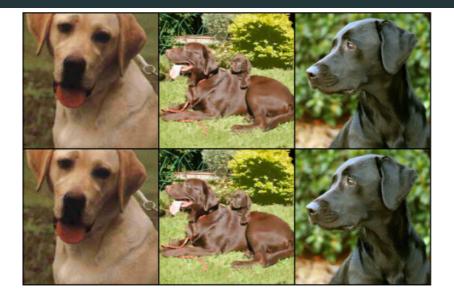
Replicate the gradient of the adversarial loss with poisoned examples.

Effect: First-order optimization of poisoned data will minimize adversarial loss as a side-effect!

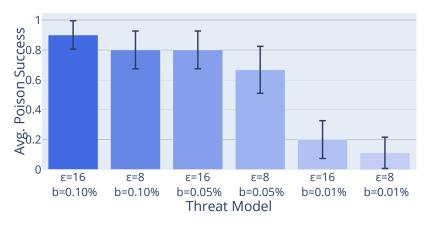
Practical Considerations

- Minimize alignment between gradient vectors with cosine similarity for cleanly trained models.
- Sample differentiable data augmentations.
- Employ restarts and small model ensembles.

Results

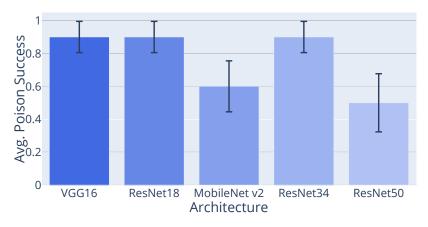


Results



ImageNet - ResNet18 - different threat models.

Results



ImageNet - Various architectures - $b = 0.10\%, \varepsilon = 16$.

Data Poisoning Benchmark (CIFAR-10, $\varepsilon = 8$)

Attack	ResNet-18	MobileNet-V2	VGG11	Average
Poison Frogs	0%	1%	3%	1.33%
Convex Polytopes	0%	1%	1%	0.67%
Clean-Label Backdoors	0%	1%	2%	1.00%
Hidden-Trigger Backdoors	0%	4%	1%	2.67%
Proposed Attack ($K = 1$)	45%	36%	8%	29.67%
Proposed Attack ($K = 4$)	55%	37%	7%	33.00%
Proposed Attack ($K=6$, Het.)	49%	38%	35%	40.67%

[K = number of ensembled models.]

Conclusions and Outlook

- Efficient approximation of the data poisoning objective.
- Strong attack that works on ImageNet from-scratch, robust against data augmentations, random minibatching, random initializations.
- The attack is also robust to recently proposed defenses based on filtering and differential privacy