

VARIATIONAL AUTO-ENCODERS (VAES)

A quick recap

- Assume data distribution is modeled by $p(x) = \int p(x|z)p(z) dz$
 - p(x|z) is the decoder distribution, and p(z) is the prior
 - Training would be easy if we have access to the posterior p(z|x), but this is intractable in general
- Resort to use variational inference, where a variational posterior q(z|x) is introduced as an approximation to the true posterior, resulting in the variational lower bound:

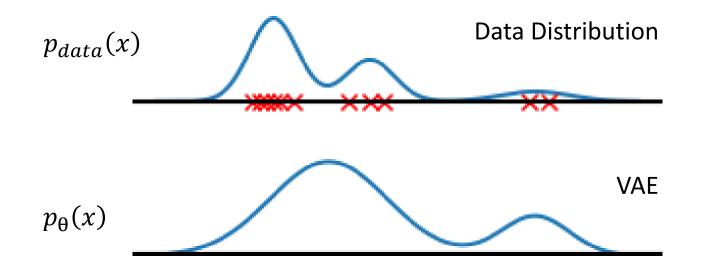
• Recently, large VAEs such as NVAE* and VDVAE** with carefully designed network structures and hierarchical latent variables achieve impressive results in likelihood modeling, but their sample qualities are still limited.

^{*} NVAE: A Deep Hierarchical Variational Autoencoder, Vahdat and Kautz.

^{**} Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images, Child

WHAT'S WRONG WITH VAES?

VAEs tend to assign high probabilities to non-data like regions!



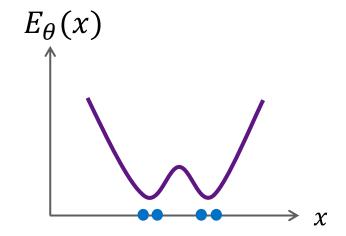
NVAE

t = 1.

ENERGY-BASED MODELS (EBMS)

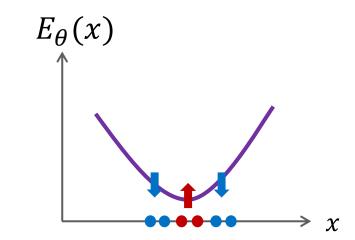
A quick introduction

- Assume data distribution is modeled by $p_{\rm EBM}(x) = \frac{1}{Z}e^{-E_{\theta}(x)}$
 - where $E_{\theta}: \mathcal{X} \to \mathbb{R}$ is an energy function implemented by neural networks
 - Z is the normalization constant



Maximum likelihood training:

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{data}(x)} \left[\log p_{\mathrm{EBM}}(x) \right] = -\mathbb{E}_{x \sim p_{data}(x)} \left[\nabla_{\theta} E_{\theta}(x) \right] + \mathbb{E}_{x \sim p_{\mathrm{EBM}}(x)} \left[\nabla_{\theta} E_{\theta}(x) \right]$$
Training Samples
Model Samples



Sampling from model is often done by Markov chain Monte Carlo (MCMC) sampling

VAES VS. EBMS

A comparison

Energy-based Models (EBMs):

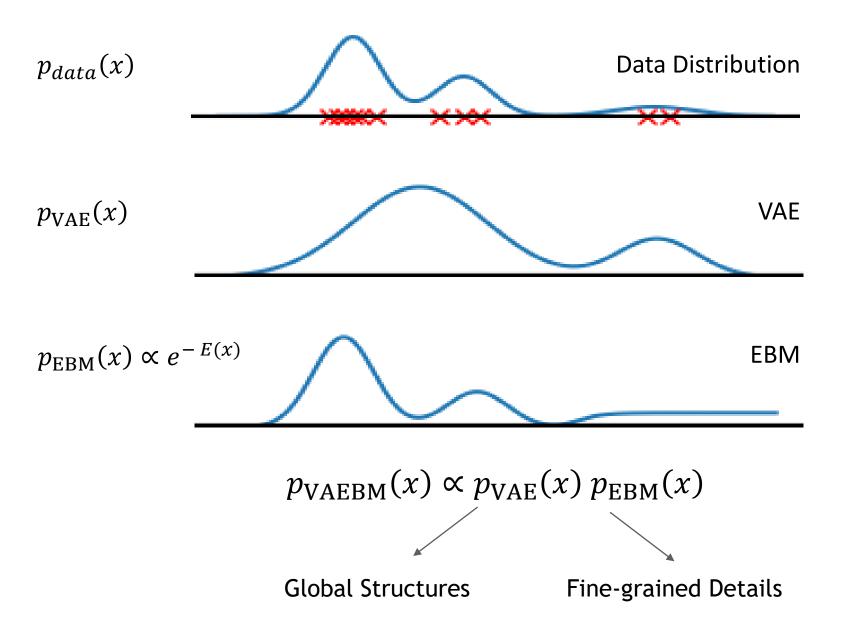
- Explicitly push down the densities of non-data like regions
- Almost no constrain on the energy function (unlike normalizing flows)
- Slow sampling during training and test due to expensive MCMC steps

Variational Autoencoders (VAEs):

- © Fast sampling, easy train
- ② Latent embedding allows fast traversal in data space
- High probabilities for non-data-like regions in the data space

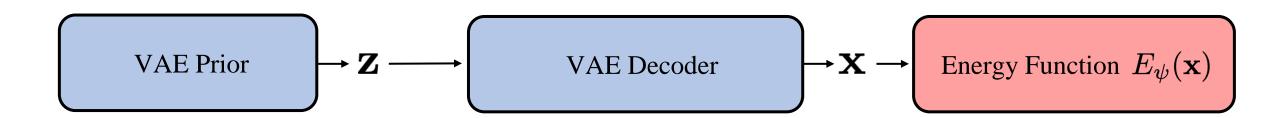
VAEBM: A symbiotic composition of VAEs and EBMs

The basic idea



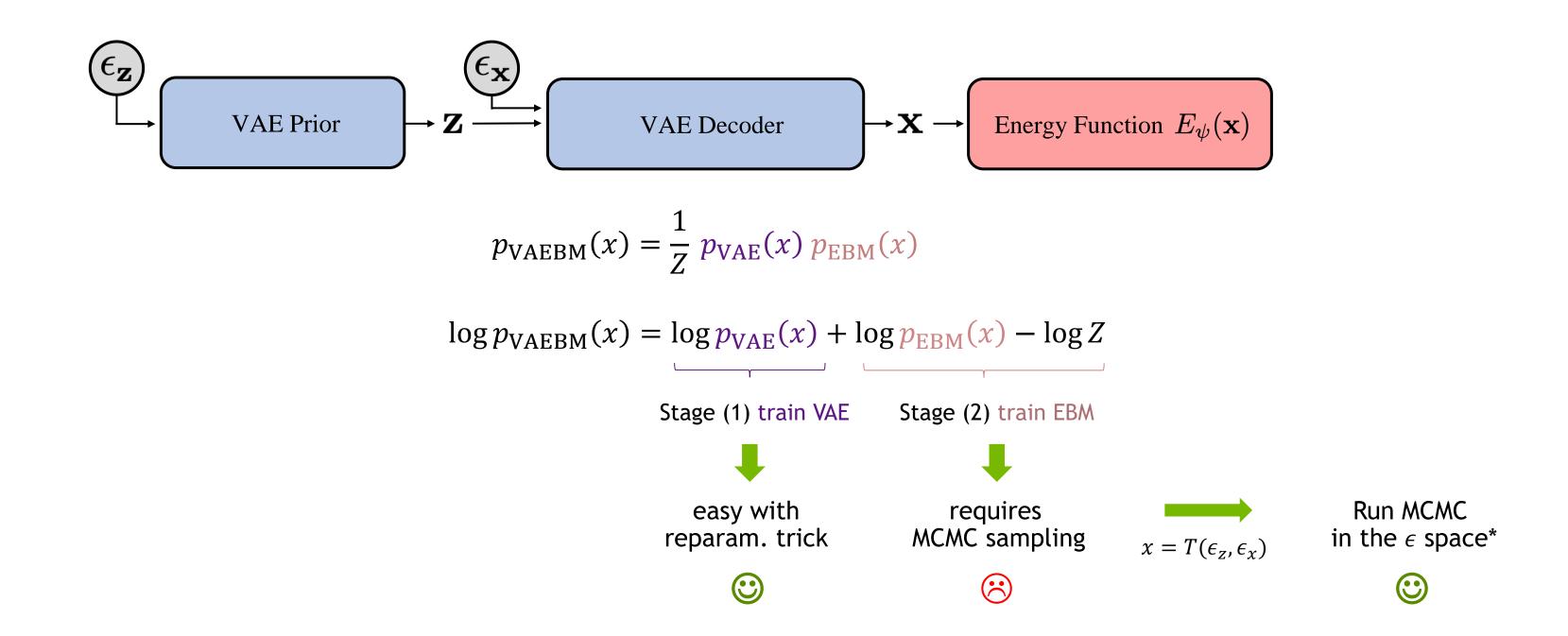
By taking the product of the densities of a VAE and an EBM, we want the VAE to capture the global structures of data, and the EBM to refine the distribution by pushing down the densities of non-data-like regions.

Conceptual Visualization



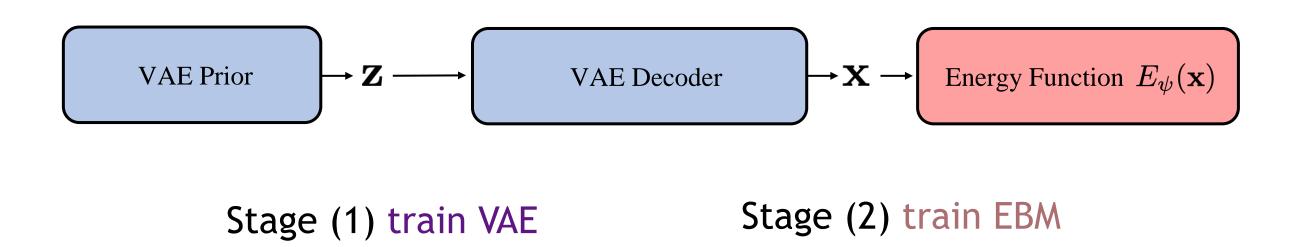
 $p_{\text{VAEBM}}(x) \propto p_{\text{VAE}}(x) p_{\text{EBM}}(x)$

Training



^{*} NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport, Hoffman et al.

Two stage training



A symbiotic composition:

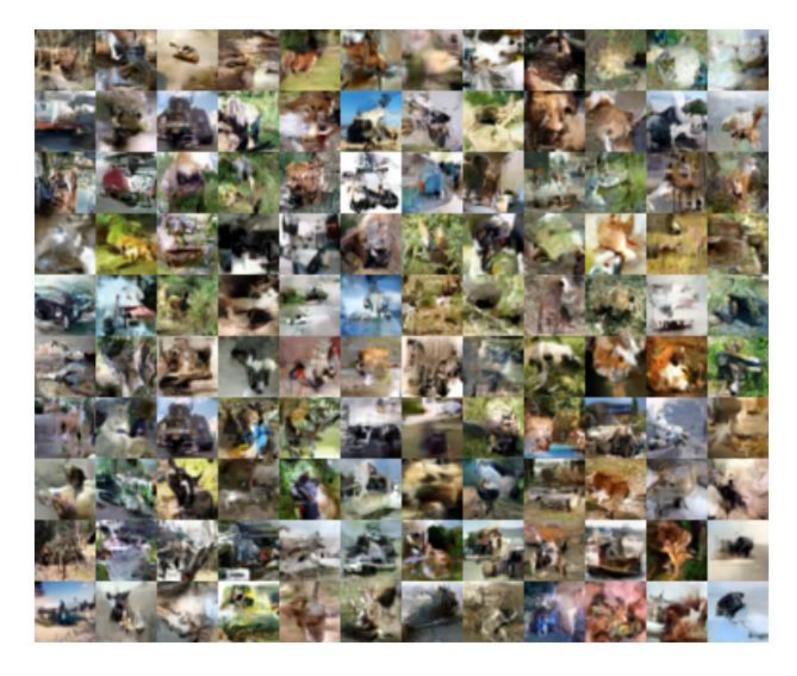
- VAE learns the overall mode structure
- VAE provides re-parametrization for MCMC sampling from EBM
- EBM helps VAE to exclude non-data-like regions
- MCMC steps are expensive, but VAEBM requires very few training epochs for EBM

9

CIFAR10

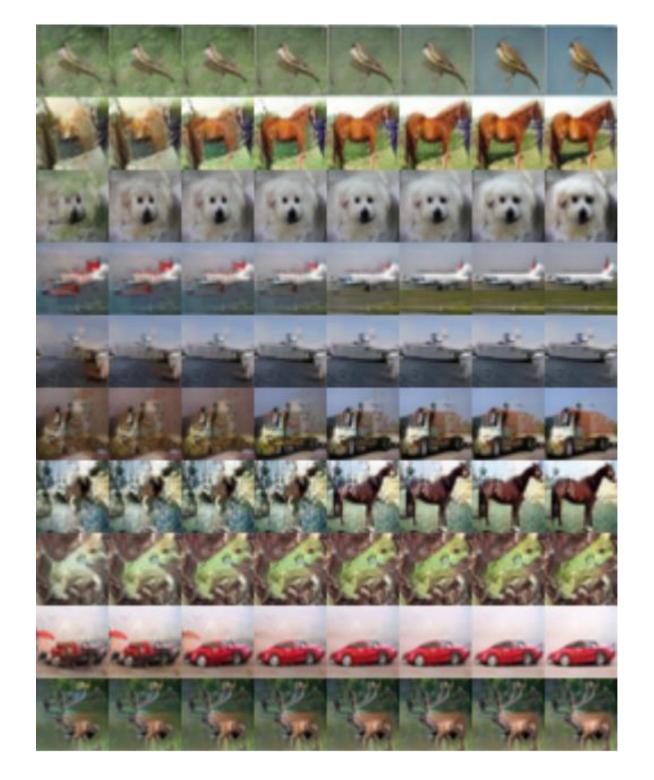
Use NVAE as the base VAE

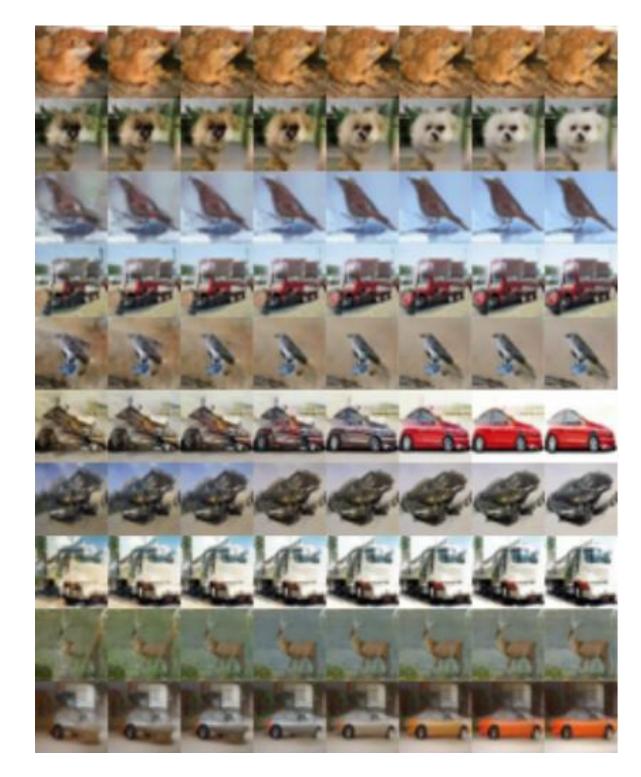
NVAE (t = 1) VAEBM



16 MCMC STEPS

CIFAR-10





QUANTITATIVE RESULTS

CIFAR-10 (unconditional)

	Model	IS↑	$FID\downarrow$
Ours	VAEBM w/o persistent chain		12.26
	VAEBM w/ persistent chain	8.43	12.19
EBMs	IGEBM (Du & Mordatch, 2019)	6.02	40.58
	EBM with short-run MCMC (Nijkamp et al., 2019b)		-
	F-div EBM (Yu et al., 2020a)		30.86
	FlowCE (Gao et al., 2020)		37.3
	FlowEBM (Nijkamp et al., 2020)		78.12
	GEBM (Arbel et al., 2020)		23.02
	Divergence Triangle (Han et al., 2020)	-	30.1
Other Likelihood Models	Glow (Kingma & Dhariwal, 2018)	3.92	48.9
	PixelCNN (Oord et al., 2016b)	4.60	65.93
	NVAE (Vahdat & Kautz, 2020)	5.51	51.67
	VAE with EBM prior (Pang et al., 2020)	-	70.15
Score-based Models	NCSN (Song & Ermon, 2019)	8.87	25.32
	NCSN v2 (Song & Ermon, 2020)	-	31.75
	Multi-scale DSM (Li et al., 2019)	8.31	31.7
	Denoising Diffusion (Ho et al., 2020)	9.46	3.17
GAN-based Models	SNGAN (Miyato et al., 2018)	8.22	21.7
	SNGAN+DDLS (Che et al., 2020)	9.09	15.42
	SNGAN+DCD (Song et al., 2020)	9.11	16.24
	BigGAN (Brock et al., 2018)	9.22	14.73
	StyleGAN2 w/o ADA (Karras et al., 2020a)	8.99	9.9
	VATRALia 12x factor than NCCN (Cong G Erman)		

VAEBM is 12x faster than NCSN (Song & Ermon)

QUALITATIVE RESULTS

Other datasets

FID: NVAE 14.7 \rightarrow VAEBM 5.3

FID: NVAE 41.3 → VAEBM 13.5

(a) CelebA 64

FID: NVAE 45.1 → VAEBM 20.4

(c) CelebA HQ 256

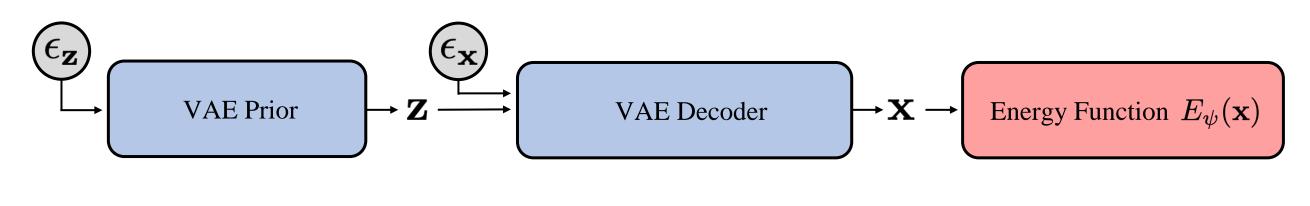
OUT OF DISTRIBUTION DETECTION

Table 6: Table for AUROC \uparrow of $\log p(\mathbf{x})$ computed on several OOD datasets. In-distribution dataset is CIFAR-10. Interp. corresponds to linear interpolation between CIFAR-10 images.

		SVHN	Interp.	CIFAR100	CelebA
Unsupervised Training	NVAE (Vahdat & Kautz, 2020)	0.42	0.64	0.56	0.68
	Glow (Kingma & Dhariwal, 2018)	0.05	0.51	0.55	0.57
	IGEBM (Du & Mordatch, 2019)	0.63	0.7	0.5	0.7
	Divergence Traingle (Han et al., 2020)	0.68	-	-	0.56
	VAEBM (ours)	0.83	0.7	0.62	0.77
Supervised	JEM (Grathwohl et al., 2020a)	0.67	0.65	0.67	0.75
Training	HDGE (Liu & Abbeel, 2020)	0.96	0.82	0.91	0.8

SUMMARY

VAEBM: A symbiotic composition of VAE & EBM



$$p_{\text{VAEBM}}(x) \propto p_{\text{VAE}}(x) p_{\text{EBM}}(x)$$

- A two-stage training is proposed
- The experimental results show that the EBM component can improve the generative quality of VAEs by a large margin
- VAE helps with MCMC sampling from the EBM component
- We showed out of distribution detection results and studied mode coverage properties
- Codes will be available at <u>github.com/NVlabs/VAEBM</u>