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Our goal is an algo with minimal worst-case suboptimality,
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We consider “value-based” algorithms,

This work provides formal justification for
the properties of every “Offline RL”
algorithm in the literature, including:

BCQ, CRR, SPIBB, BEAR, CQL, KLC, BRAC,
MBS-QI, MoREL, MOPO, and more.

O (D) := argmax E, [Eqp (D, m)).

These algorithms can be characterized by the choice of fixed point of E
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Suboptimality of these algos permits an “over/under decomposition”,

Theorem 1. For any space X, objective f : X — R, and proxy objective f X =R,
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where £* := argmax,cy f(z) and £* := arg max,c y f(x). Furthermore, this bound is tight.

One important type of algo is “naive”:

fnaive(vw) = Aﬂ(rD + ’YPDVW).
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This often leads to a large “sup” term. We can fix this by finding pessimistic
fixed points, which let us choose the relative size of the two terms:
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Implementing this algorithm requires implementing a valid uncertainty

measure, which we don’t know how to do right now with NNs. If we take
we get proximal algorithms:

“trivial uncertainty” of V__,

fproximal(vw) = AW(I’D + ’)’PDVW) -« (
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The trivial uncertainty is the “worst” uncertainty, leading to a much
looser bound; but it is, at least, implementable.



