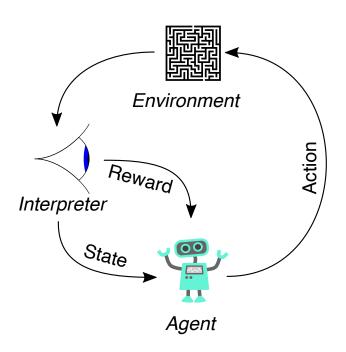
Rui Zhao^{1,2}, Yang Gao³, Pieter Abbeel⁴, Volker Tresp^{1,2}, Wei Xu⁵

1. Ludwig Maximilian University of Munich, 2. Siemens AG, 3. Tsinghua University, 4. UC Berkeley, 5. Horizon Robotics

Mutual Information State Intrinsic Control International Conference on Learning Representations (ICLR) 2021, Spotlight Motivation and Contribution

- Learning by interacting with the environment
 - Like the way humans learn
- Self-consciousness in psychology
 - the agent knows what constitutes itself
- Propose a new intrinsic objective
 - encourage the agent to have maximum control on the environment.
- Outperform previous methods
 - complete the pick-and-place task for the first time without using any task reward.



International Conference on Learning Representations (ICLR) 2021

Mutual Information Reward Function

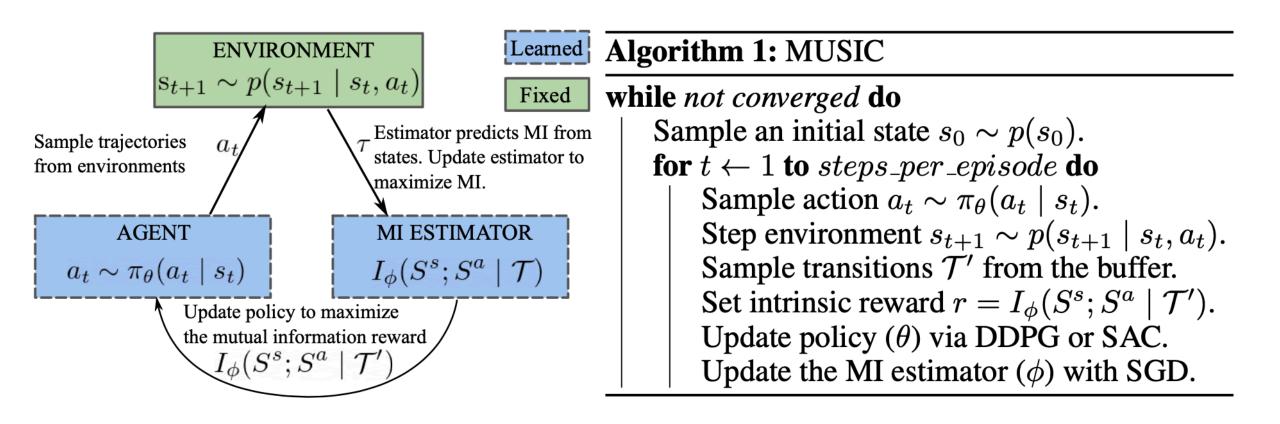
$$egin{aligned} I(S^s;S^a) &= \mathit{KL}(\mathbb{P}_{S^sS^a} \mid\mid \mathbb{P}_{S^s}\otimes \mathbb{P}_{S^a}) \ &= \sup_{T:\Omega o\mathbb{R}} \mathbb{E}_{\mathbb{P}_{S^sS^a}}[T] - \log(\mathbb{E}_{\mathbb{P}_{S^s}\otimes \mathbb{P}_{S^a}}[e^T]) \ &\geq \sup_{\phi\in\Phi} \mathbb{E}_{\mathbb{P}_{S^sS^a}}[T_\phi] - \log(\mathbb{E}_{\mathbb{P}_{S^s}\otimes \mathbb{P}_{S^a}}[e^{T_\phi}]) \coloneqq I_\Phi(S^s;S^a) \end{aligned}$$

Effectively Computing the Mutual Information Reward in Practice

$$I_{\phi}(S^s; S^a \mid \mathcal{T}) \ltimes \mathbb{E}_{\mathbb{P}_{\mathcal{T}'}}[I_{\phi}(S^s; S^a \mid \mathcal{T}')]$$

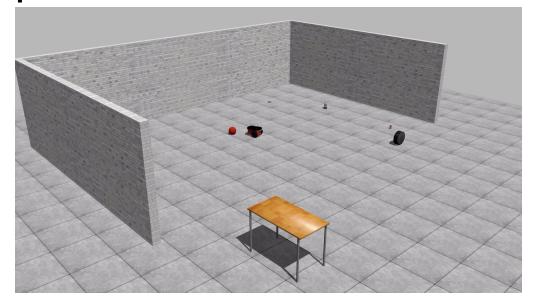
$$r_{\phi}(a_t, s_t) := I_{\phi}(S^s; S^a | \mathcal{T}') = 0.5 \sum_{i=t}^{t+1} T_{\phi}(s_i^s, s_i^a) - \log(0.5 \sum_{i=t}^{t+1} e^{T_{\phi}(s_i^s, \bar{s}_i^a)})$$

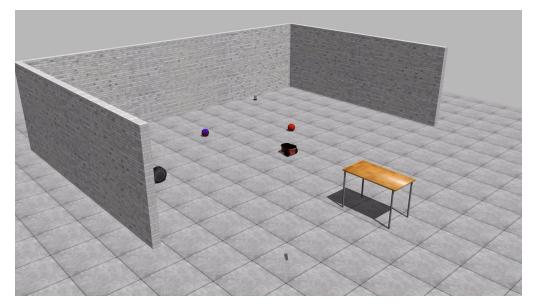
MUSIC Algorithm

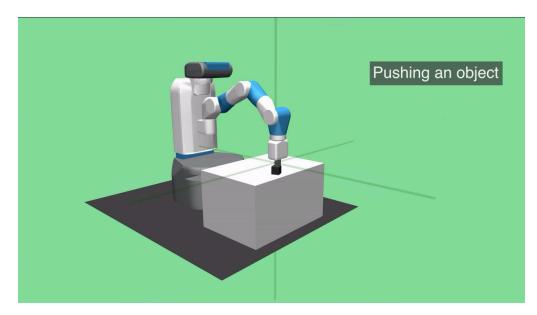


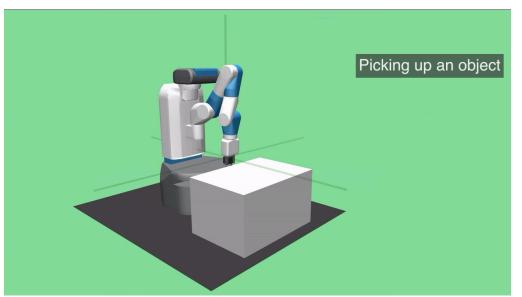
MUSIC Algorithm: We update the estimator to better predict the MI, and update the agent to control the surrounding state to have higher MI with the agent state.

Mutual Information State Intrinsic Control Unsupervised learned behaviour



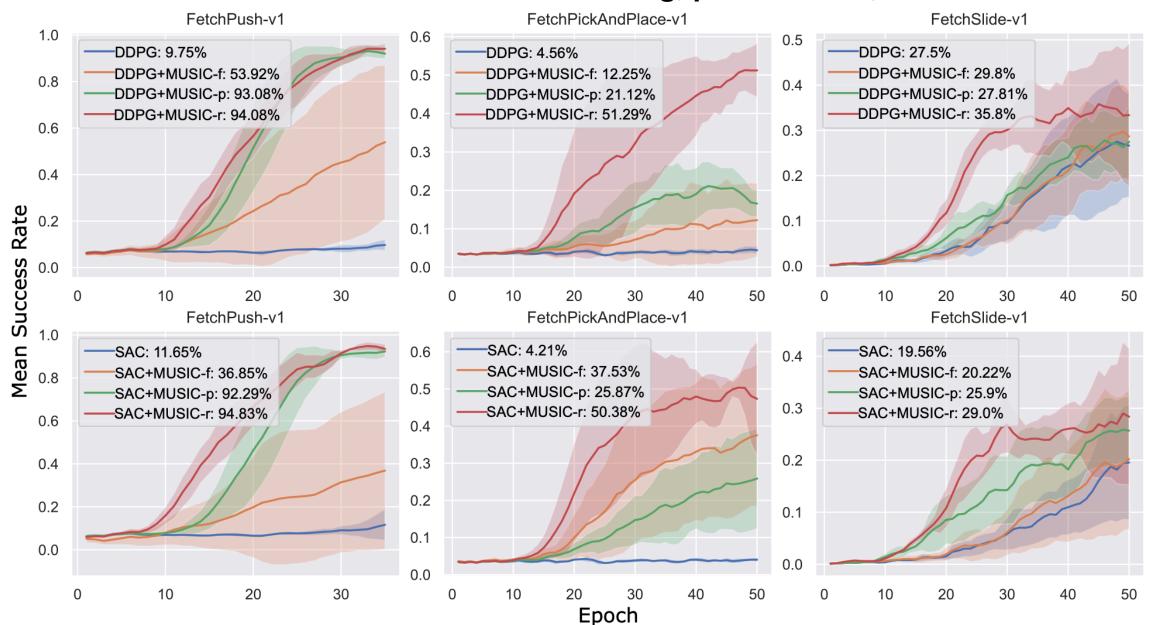


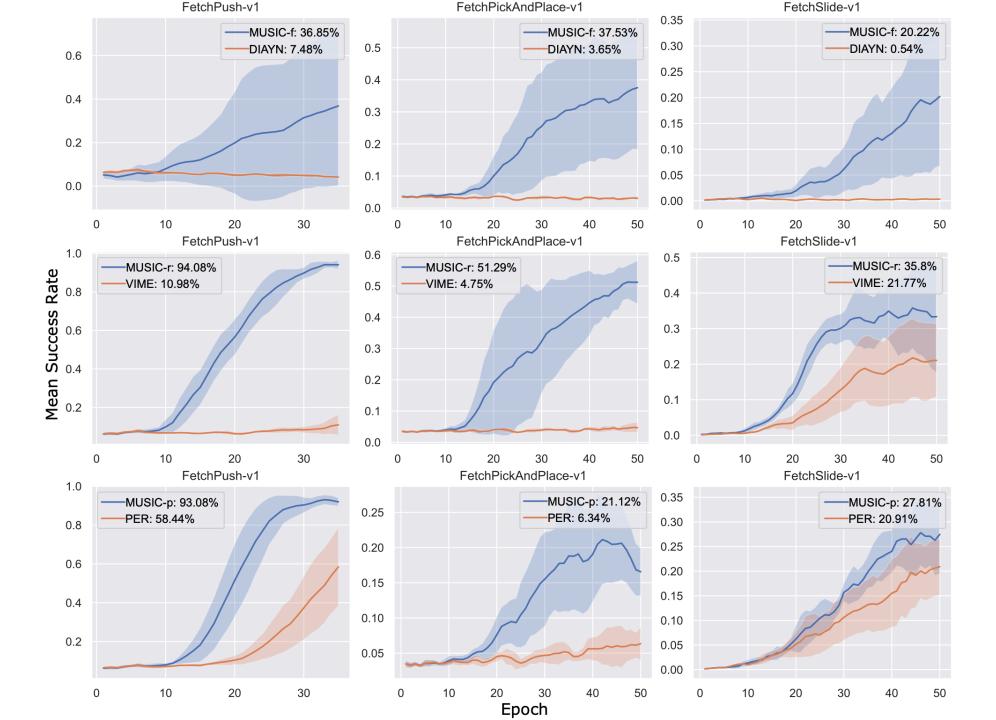




<u>Mutual-Information State Intrinsic Control (MUSIC)</u>

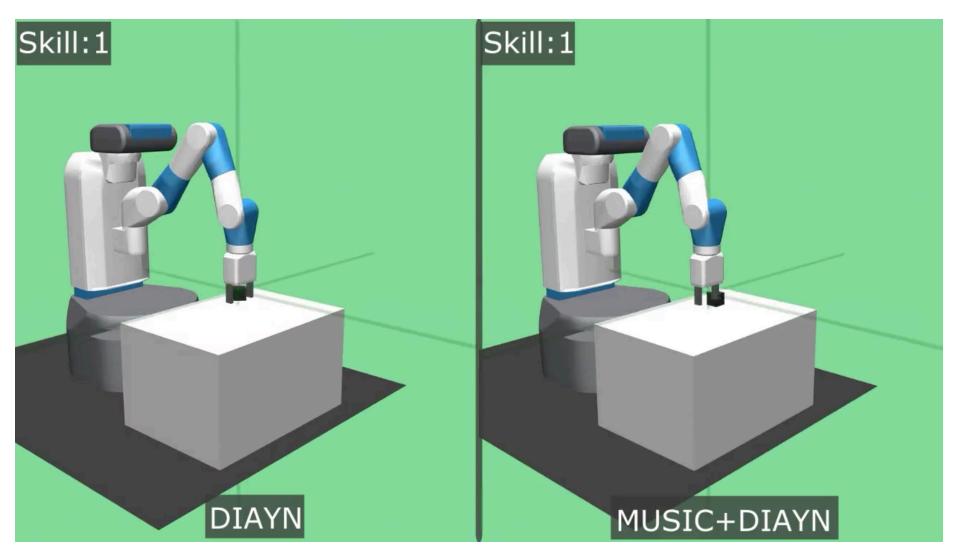
MUSIC combined with task rewards via: fine-tuning, prioritization, and intrinsic reward



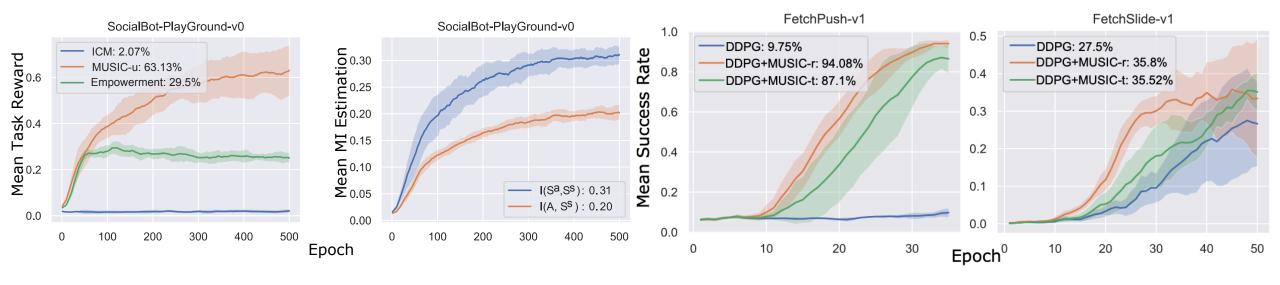


Compare MUSIC with DIAYN

$$\mathcal{F}_{ ext{MUSIC+DIAYN}} = I(S^a; S^s) + I(S^s; Z) + \mathcal{H}(A \mid S, Z)$$

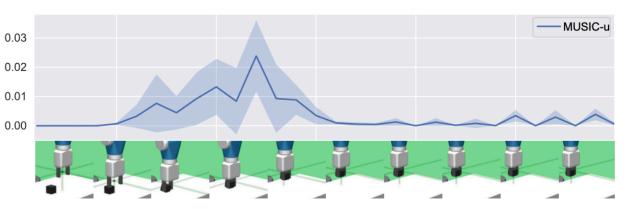


Compare MUSIC with Empowerment and DISCERN Transfer Learning and reward distribution



Comparison of DISCERN	I with and	without MUSIC
------------------------------	------------	---------------

=			
Method	Push (%)	Pick & Place (%)	0
DISCERN	$7.94\% \pm 0.71\%$	$4.23\% \pm 0.47\%$	0
R (Task Reward)	$11.65\% \pm 1.36\%$	$4.21\% \pm 0.46\%$	0
R+DISCERN	$21.15\% \pm 5.49\%$	$4.28\% \pm 0.52\%$	
R+DISCERN+MUSIC	$C95.15\% \pm 8.13\%$	$48.91\% \pm 12.67\%$	



Future Research Directions

- When the existing separation is suboptimal, new methods are needed to divide and select the states automatically.
 - with different combination of state-pairs, the agent can learn different skills
- Using learned skills for hierarchical reinforcement learning
 - Action spaces: learned skill-options
 - Playing billiards, building Lego

Mutual Information estimation prior and post to the training

Mutual Information Objective	Prior-train Value	Post-train Value
MI(grip_pos; object_pos) MI(grip_pos; object_rot) MI(grip_pos; object_velp)	0.003 ± 0.017 0.017 ± 0.084 0.005 ± 0.010	0.164 ± 0.055 0.461 ± 0.088 0.157 ± 0.050
MI(grip_pos; object_velr)	0.016 ± 0.083	0.438 ± 0.084

Mutual Information State Intrinsic Control Summary and Take-home Message

- To encourage the agent to control its surroundings help the agent to explore and learn new skills.
- The learned skills or the proposed intrinsic reward help the agent to quickly learn to solve different downstream tasks.

Thank you! Questions?