The Risks of Invariant Risk Minimization

Elan Rosenfeld

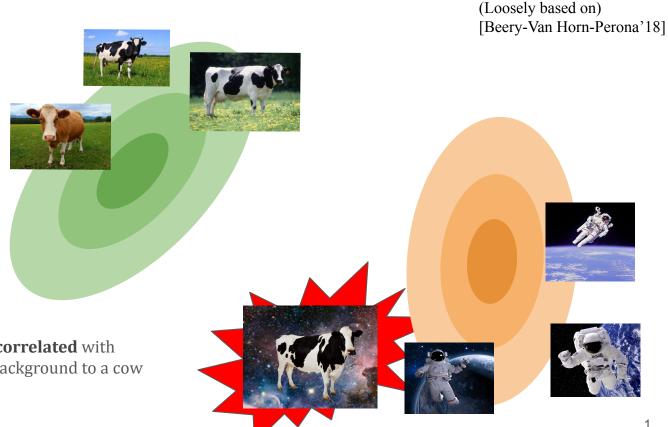
Pradeep Ravikumar

Andrej Risteski

Carnegie Mellon University

Goal: Out-of-Distribution Generalization

Consider the following classification problem:



"Space background" is **strongly correlated** with "astronaut". But adding a space background to a cow **doesn't make it an astronaut.**

Goal: Out-of-Distribution Generalization

[Ribeiro-Singh-Guestrin'16]

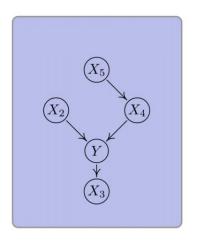
(a) Husky classified as wolf

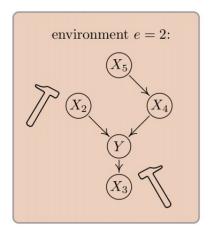
(b) Explanation

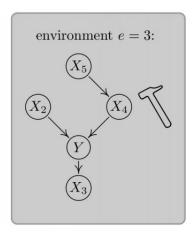
Key Question: How can a classifier generalize to distributions where these correlations **do not hold** (or are even **reversed**)?

[Peters-Bühlmann-Meinshausen'15]

Assume some Structural Causal Model (SCM): $X_i = f_i(\operatorname{Parents}(X_i); \epsilon_i)$





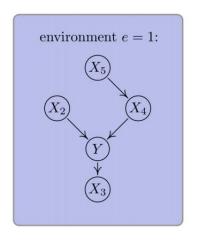


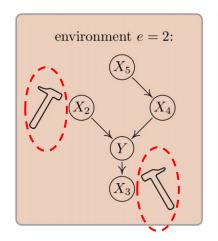
Further assume that the data can be partitioned into **environments**.

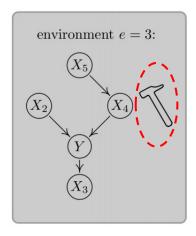
Subsets generated by the **same SCM**, but each has a distinct **intervention** on some of the covariates.

[Peters–Bühlmann–Meinshausen'15]

Assume some Structural Causal Model (SCM): $X_i = f_i(\operatorname{Parents}(X_i); \epsilon_i)$







Further assume that the data can be partitioned into **environments**.

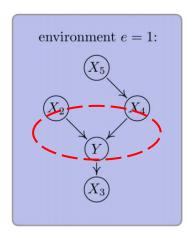
Subsets generated by the **same SCM**, but each has a distinct **intervention** on some of the covariates.

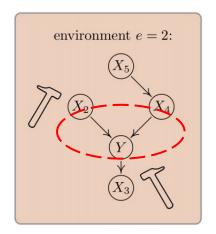
Arbitrary modification of the distribution of some covariates, maintaining all other functional mechanisms.

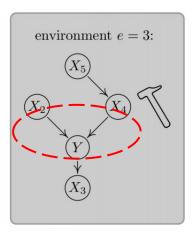
[Peters–Bühlmann–Meinshausen'15]

Assume some Structural Causal Model (SCM): $X_i = f_i(\operatorname{Parents}(X_i); \epsilon_i)$

P(Y | Parents(Y)) is **invariant**.







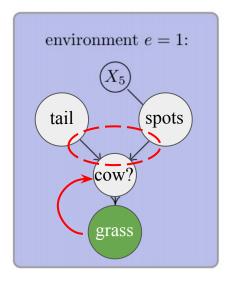
If we predict using only the direct parents of the target, predictor is **minimax**.

For **any predictor** which uses a non-parent, \exists an intervention which causes it to fail.

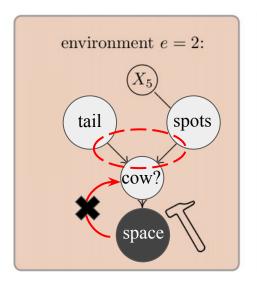
[Peters-Bühlmann-Meinshausen'15]

Returning to our example of cows vs. astronauts...

Train



Test



Deep Invariant Feature Learning

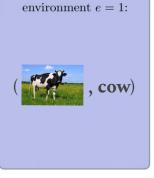
Works well for fully observed features.

What about when covariates are **unobserved**?

ates (x_2) (x_4) (x_3) (x_3) and (x_3) (x_4) (x_3) (x_4) (x_3) (x_4) (x_3) (x_4) $(x_$

environment e = 1:

Complex (Non-linear) Function



Plenty of algorithms for provably uncovering structure here.

Not so here.

New Question: How can we identify the invariant features when the covariates are **latent**?

Deep Invariant Feature Learning

This talk **does not attempt** to answer this question.

Rather, this talk shows that

existing objectives intended to solve this problem **do not behave as expected.**

New Question: How can we identify the invariant features when the covariates are **latent**?

Deep Invariant Feature Learning

This talk **does not attempt** to answer this question.

Rather this talk shows that

We prove that solving the proposed objectives can **rarely, if ever** ensure outperforming ERM at test time.

New Question: How can we identify the invariant features when the covariates are **latent**?

Outline

- 1. IRM and Variations
- 2. Latent Variable Model
- 3. Formal Results
 - a. Linear Setting
 - b. Non-Linear Setting

Outline

- 1. IRM and Variations
- 2. Latent Variable Model
- 3. Formal Results
 - a. Linear Setting
 - b. Non-Linear Setting

[Arjovsky-Bottou-Gulrajani-Lopez-Paz'19]

None of this is intended to be formal!

Consider a feature embedder Φ and regression vector β .

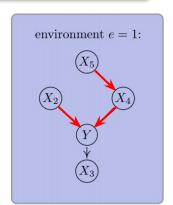
Linear Regression:
$$E[Y \mid \Phi(x)] = eta^T \Phi(x)$$

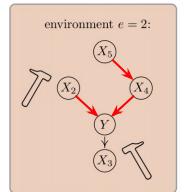
$$\Phi(X) = [X_2, X_5]$$

$$E[Y\mid \Phi(X)]=eta_1^{*T}[X_{2,}X_{5}]$$

$$E[Y\mid \Phi(X)]=eta_2^{*T}[X_{2,}X_{5}]$$

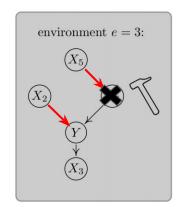
$$E[Y\mid \Phi(X)]=eta_3^{*T}[X_{2,}X_{5}]$$





$$eta_1^* = eta_2^*
eq eta_3^*$$

Intervention is *arbitrary*.



[Arjovsky-Bottou-Gulrajani-Lopez-Paz'19]

None of this is intended to be formal!

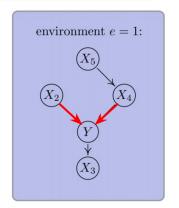
Consider a feature embedder Φ and regression vector β .

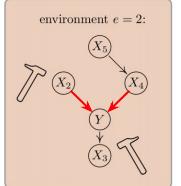
Linear Regression:
$$E[Y \mid \Phi(x)] = eta^T \Phi(x)$$

$$\Phi(X) - [X_2, X_5]$$

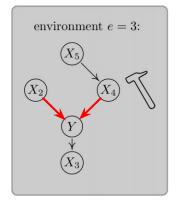
$$\Phi(X) = [X_2, X_4]$$

Optimal vector is equal in all environments!





$$eta_1^* = eta_2^* = eta_3^*$$



[Arjovsky-Bottou-Gulrajani-Lopez-Paz'19]

None of this is intended to be formal!

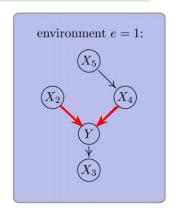
Consider a feature embedder Φ and regression vector β .

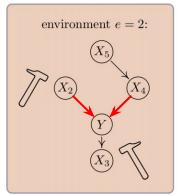
Linear Regression:
$$E[Y \mid \Phi(x)] = eta^T \Phi(x)$$

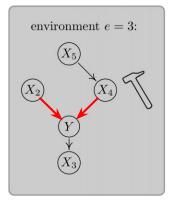
$$\Phi(X) = [X_2, X_5]$$

$$\Phi(X) = [X_2, X_4]$$

Optimal vector is equal in all environments!







Expect $E[Y \mid \Phi(X)]$ is **invariant** if and only if Φ recovers the invariant features.

[Arjovsky-Bottou-Gulrajani-Lopez-Paz'19]

Idea: The optimal **\beta** should be **the same** for all environments.

Standard ERM risk term

IRM Objective to enforce this:

$$\min_{\Phi,\,eta} \quad \sum_{e\in\mathcal{E}} R^e(eta\circ\Phi)$$

 $egin{aligned} s.\,t.\,\,eta \in rg\min_{\hat{eta}} R^e \Big(\hat{eta} \circ \Phi\Big), \, orall e \in \mathcal{E}, \end{aligned}$

Invariance requirement

Side note: This is *not* just "regularized ERM".

(Problems with) Invariant Risk Minimization

- One formal result regarding solution invariance
 - More of a motivation than a justification
 - > Only for **fully linear** regression
 - > Could require as many environments as **ambient dimension** (think images)
- What about other forms of invariance? Possible misspecification
 - Lots of suggested variations
 - Still no rigorous analysis...

Second Moment Invariance

REx [KCJZ+'20] RVP [XCLL'20] Gradient Norm [BS'20]

$egin{aligned} \min_{\Phi,\,eta} && \sum_{e\in\mathcal{E}} R^e(eta\circ\Phi) \ && s.\,t.\,\,eta\inrg\min_{\hat{eta}} R^e\Big(\hat{eta}\circ\Phi\Big),\,orall e\in\mathcal{E} \end{aligned}$

[Gulrajani & Lopez-Paz'21] (extensive experiments suggest that none of these beat ERM)

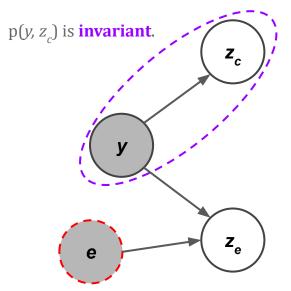
Feature Distribution Invariance

Causal Matching [MTS'20] MMD/KL Penalty [GZLK'21]

Outline

- 1. IRM and Variations
- 2. Latent Variable Model
- 3. Formal Results
 - a. Linear Setting
 - b. Non-Linear Setting

For each environment e,



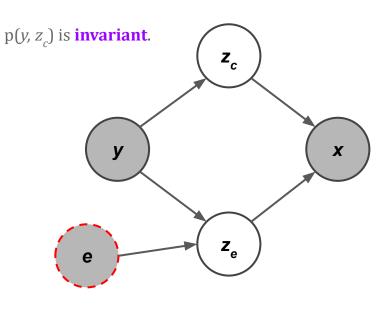
We'll call these features "invariant"

And these "environmental"

For each environment e,

Our model allows for *any* invertible *f*.

f can be **non-linear** and **arbitrarily complex**.



Generalization of the "Gaussian model" [Schmidt–Santurkar–Tsipras–Talwar–Mądry'18] [Sagawa–Raghunathan–Koh–Liang'20]

For each environment e,

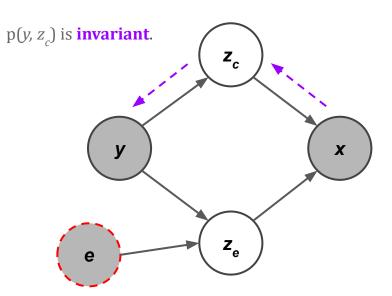
$$d_e := \dim(z_e) \qquad iggl[d_e \gg E iggr]$$

 $p(y, z_c)$ is **invariant**. Note that **this is purely a** statistical model.

We assume a finite number of environments *E*, but infinite observations from each environment.

For each environment e,

$$d_e := \dim(z_e) \qquad iggl[d_e \gg E iggr]$$



Ultimate goal: $\Phi^*(x) = z_c$

$$eta^* = rg \min_eta R(eta \circ \Phi^*)$$

We call Φ^* , β^* the "Optimal Invariant Predictor" (OIP)

Outline

- 1. IRM and Variations
- 2. Latent Variable Model
- 3. Formal Results
 - a. Linear Setting
 - b. Non-Linear Setting

Regressing on *learned* features $\hat{z} = \Phi(x) = \Phi(f(z))$

Restrict f, Φ to be **linear**

Thus, our features can be written $\hat{z} = \Phi F z = A z_c + B z_e$

If we want **feature invariance**, our goal should be $\mathbf{B} = \mathbf{0}$.

To capture all invariant information, A should be full rank.

Recall:
$$\hat{z} = \Phi Fz = Az_c + Bz_e$$

Theorem: Suppose we observe **E** environments. Then under minor non-degeneracy conditions:

Recall:
$$\hat{z} = \Phi Fz = Az_c + Bz_e$$

Theorem: Suppose we observe **E** environments. Then under minor non-degeneracy conditions:

• If $E \le d_e$, there is a **feasible** linear Φ

Recall:
$$\hat{z} = \Phi Fz = Az_c + Bz_e$$

Theorem: Suppose we observe **E** environments. Then under minor non-degeneracy conditions:

• If $E \le d_e$, there is a **feasible** linear Φ inducing B with **non-zero rank**

Not minimax!

Recall:
$$\hat{z} = \Phi F z = A z_c + B z_e$$

Theorem: Suppose we observe **E** environments. Then under minor non-degeneracy conditions:

• If $E \le d_e$, there is a **feasible** linear Φ inducing B with **non-zero rank** and **lower training risk** than the Optimal Invariant Predictor.

Preferable solution.

Recall:
$$\hat{z} = \Phi F z = A z_c + B z_e$$

Theorem: Suppose we observe **E** environments. Then under minor non-degeneracy conditions:

- If $\mathbf{E} \leq \mathbf{d}_e$, there is a **feasible** linear $\mathbf{\Phi}$ inducing \mathbf{B} with **non-zero rank** and **lower training risk** than the Optimal Invariant Predictor.
- If $E > d_{\rho}$, any feasible linear Φ must have B = 0.

Corollary: The Optimal Invariant Predictor is the **global minimum** of the IRM objective **if and only if** $E > d_e$.

Proof sketch:

Any embedder $\Phi(x) = [z_c, Bz_e]$ where $B \neq 0$ will have **lower risk**.

Remains to show that such a Φ can be feasible...

Linear f, $\Phi \Rightarrow \hat{z}$ Gaussian.

Optimal vector $\boldsymbol{\beta}^*$ is available in closed form: $\Sigma^{-1}(\mu(1) - \mu(-1))$

This will be a function of B

Proof sketch:

Any embedder $\Phi(x) = [z_c, Bz_e]$ where $B \neq 0$ will have **lower risk**.

Remains to show that such a Φ can be feasible...

We construct B as a function of μ_e , Σ_e such that:

- B has rank d_{ρ} E + 1
- β^* is **the same** for all environments (*feasible*)
- For $E > d_{\rho}$: we show β^* invariant $\Rightarrow B = 0$.

(depends on non-invariant features)

Takeaway: Invariant prediction is *difficult, but possible* in the linear setting.

 $E > d_e$ seems unachievable in practice; linear dependence probably unavoidable without stronger assumptions.

Arjovsky et al. provide a similar upper bound in the linear setting.

- > Ours is **sharper**, more intuitive.
- ➤ We also give a matching **lower bound**.

Both proofs show that each environment restricts a "degree of freedom" of Φ .

Natural Question: Does this intuition extend to **non-linear** observations?

Outline

- 1. IRM and Variations
- 2. Latent Variable Model
- 3. Formal Results
 - a. Linear Setting
 - b. Non-Linear Setting

Still regress on $\hat{z} = \Phi(x) = \Phi(f(z))$, but f, Φ are arbitrarily complex.

We study the Lagrangian used in practice:

$$ext{IRMv1} := \min_{\Phi,eta} \; \sum_{e \in \mathcal{E}} R^e(eta \circ \Phi) \, + \, \lambda \sum_{e \in \mathcal{E}} \|
abla R^e(eta \circ \Phi) \|_2^2$$

For convex risk, equivalent to IRM for $\lambda \to \infty$.

Theorem: For any invertible f there is a predictor Φ , β with the following properties:

- 1. The penalty term is **exponentially small** in d_{ρ} .
- 2. The predictor matches the Optimal Invariant Predictor on all but an **exponentially small** fraction of the training data.
- 3. *On any test distribution* **slightly different** from the training distributions, the predictor behaves exactly like the ERM solution on all but an exponentially small fraction.

Theorem: For any invertible f there is a predictor Φ , β with the following properties:

- 1. The penalty term is **exponentially small** in d_{ρ} .
- 2. The predictor matches the Optimal Invariant Predictor on all but an **exponentially small** fraction of the training data.
 - \triangleright (Polynomial # of samples \Rightarrow totally indistinguishable!)
- 3. *On any test distribution* **slightly different** from the training distributions, the predictor behaves exactly like the ERM solution on all but an exponentially small fraction.

For any *f*, there exists a predictor which is **practically indistinguishable** from the Optimal Invariant Predictor at train time.

Theorem: For any invertible f there is a predictor Φ , β with the following properties:

- 1. The penalty term is **exponentially small** in d_e .
- 2. The predictor matches the Optimal Invariant Predictor on all but an **exponentially small** fraction of the training data.
 - \triangleright (Polynomial # of samples \Rightarrow totally indistinguishable!)
- 3. *On any test distribution* **slightly different** from the training distributions, the predictor behaves exactly like the ERM solution on all but an exponentially small fraction.

At test time, this predictor will perform **almost exactly** like the predictor learned with ERM.

Takeaway: Even if we *could* solve these objectives, there is **no reason** to believe that we've recovered more useful features than ERM.

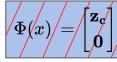
- 1. The penalty term is **exponentially small** in d_{ρ} .
- 2. The predictor matches the Optimal Invariant Predictor on all but an **exponentially small** fraction of the training data.
 - \triangleright (Polynomial # of samples \Rightarrow totally indistinguishable!)
- 3. *On any test distribution slightly different from the training distributions, the predictor behaves* exactly like the ERM solution.

For these objectives to work, we'd need to observe enough environments to "cover" the space of features. But then *ERM will generalize just as well!*

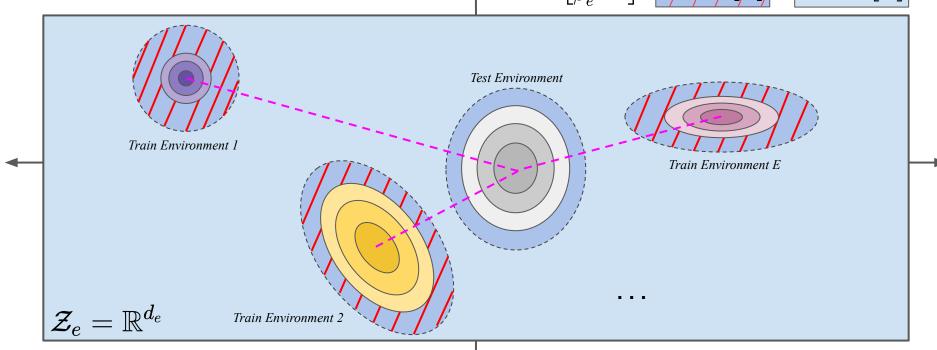
Proof sketch:

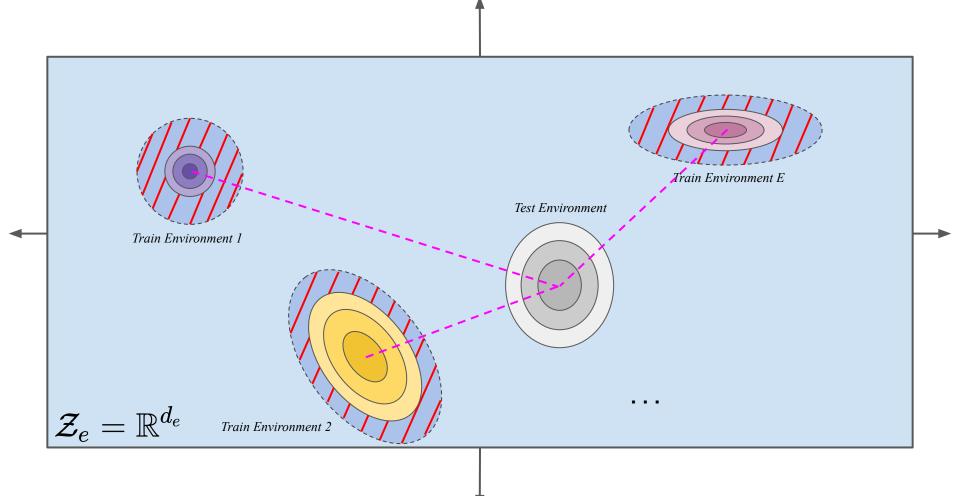
Now we construct $oldsymbol{\Phi}$, $oldsymbol{eta}$:

 $eta = egin{bmatrix} eta_c^* \ eta_e^{ERM} \end{bmatrix}$



$$egin{aligned} \Phi(x) &= egin{bmatrix} \mathbf{z_c} \ \mathbf{z_e} \end{bmatrix}$$





Implications and Future Work

Causal reasoning for invariant prediction remains a promising approach for generalizing to unseen domains.

But when the features are latent, more care is needed to ensure our objectives actually work!

(Especially for complex, non-linear data)

Open questions:

- Can we avoid the linear dependence on environmental dimension?
 - \triangleright With the right assumptions, $O(\sqrt{d_{\rho}})$ or even $O(\log d_{\rho})$ seem feasible.
- ❖ In the non-linear case, can we do **anything at all** to improve over ERM?
 - \triangleright Perhaps by limiting the complexity of Φ .

^{*}Also, we need to stop tuning on the test set.