A Distributional Approach to Controlled Text Generation

Muhammad Khalifa* Cairo University

Hady Elsahar*, Marc Dymetman* Naver Labs Europe

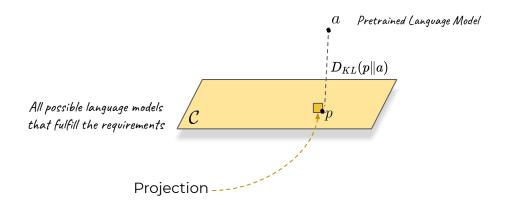
* Equal Contribution

Motivation 1: Distributional Constraints

Existing approaches focus on fulfilling requirements at the level of *individual* samples.

However, they fail to control such collective statistics.

Motivation 2: Avoiding large deviations



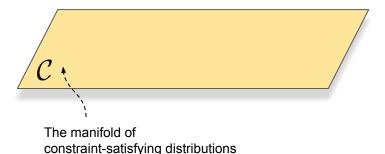
Out of all possible language models satisfying the requirements, which one to choose?

One that minimizes divergence from initial LM to avoid degeneration issues.

Our objective is a distribution over sequences a.k.a language model.

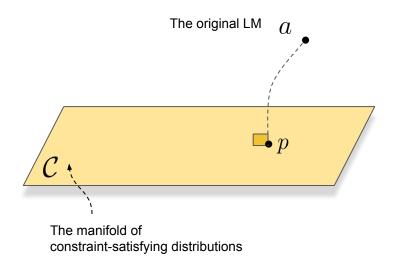
1. If \mathcal{C} is the manifold of distributions that satisfy our constraints and a is the initial PLM.

The original LM



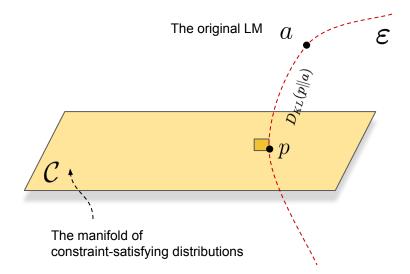
Our objective is a distribution over sequences a.k.a language model.

- 1. If \mathcal{C} is the manifold of distributions that satisfy our constraints and a is the initial PLM.
- 2. Our goal is the p, I-Projection of a over c (minimized divergence). (Cszisar and Shields, 2004)



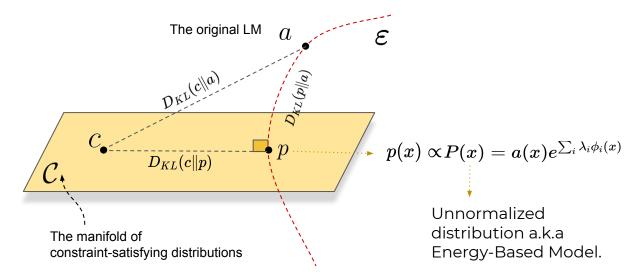
Our objective is a distribution over sequences a.k.a language model.

- 1. If \mathcal{C} is the manifold of distributions that satisfy our constraints and a is the initial PLM.
- 2. Our goal is the p, I-Projection of a over c (minimized divergence). (Cszisar and Shields, 2004)
- 3. It can be shown that p follows an exponential family distribution $\boldsymbol{\varepsilon}$.

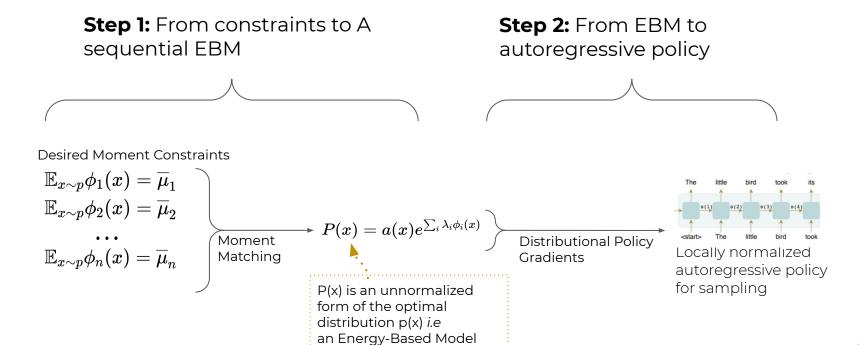


Our objective is a distribution over sequences a.k.a language model.

- 1. If \mathcal{C} is the manifold of distributions that satisfy our constraints and a is the initial PLM.
- 2. Our goal is the p, I-Projection of a over c (minimized divergence). (Cszisar and Shields, 2004).
- 3. It can be shown that p follows an exponential family distribution ${m \mathcal E}$.



A two-step approach



Step 1: Moment Matching

Our EBM can be represented as $P(x)=a(x)e^{\sum_i\lambda_i\phi_i(x)}$, where $p(x)\propto P(x)$. The first step is to learn the optimal parameters vector $\boldsymbol{\lambda}$ such that

$$\mathbb{E}_{x\sim p}\phi(x)\simeq \overline{oldsymbol{\mu}}$$
 Desired moment constraints

Step 1: Moment Matching

Our EBM can be represented as $P(x)=a(x)e^{\sum_i\lambda_i\phi_i(x)}$, where $p(x)\propto P(x)$. The first step is to learn the optimal parameters vector ${m \lambda}$ such that

$$\mathbb{E}_{x\sim p}\phi(x)\simeq \overline{oldsymbol{\mu}}_{ullet}.$$

Desired moment constraints

Algorithm 1 Computing λ

Input: a, features ϕ , imposed moments $\bar{\mu}$

1: sample a batch x_1, \ldots, x_N from a

2: for each $j \in [1, N]$: $w_j(\lambda) \leftarrow e^{\lambda \cdot \phi(x_j)}$

Self-normalized importance sampling (SNIS) since we can't sample from p_{λ}

Self-normalized
$$\hat{\mu}(\lambda) \leftarrow \frac{\sum_{j=1}^{N} w_j(\lambda) \phi(x_j)}{\sum_{j=1}^{N} w_j(\lambda)}$$

4: solve by SGD: $\arg\min_{\lambda} ||\bar{\mu} - \hat{\mu}(\lambda)||_2^2$ Output: parameter vector λ

Step 2: KL-DPG

Converts the EBM P(x) into an autoregressive model π_{θ} which minimizes $CE(p, \pi_{\theta})$:

$$abla_{ heta}CE(p,\pi_{ heta}) = -
abla_{ heta}\mathbb{E}_{x\sim p}\log\pi_{ heta}(x) = -rac{1}{Z}\mathbb{E}_{x\sim q}rac{P(x)}{q(x)}
abla_{ heta}\log\pi_{ heta}(x)$$

Sampling from a proposal **q** instead

Step 2: KL-DPG

Converts the EBM P(x) into an autoregressive model π_{θ} which minimizes $CE(p, \pi_{\theta})$:

Algorithm 2 KL-Adaptive DPG

```
Input: P, initial policy q 1: \pi_{\theta} \leftarrow q
```

2: **for** each iteration **do**

3: **for** each episode **do** 4: sample x from $q(\cdot)$

5: $\theta \leftarrow \theta + \alpha^{(\theta)} \frac{P(x)}{g(x)} \nabla_{\theta} \log \pi_{\theta}(x)$

6: if $D_{\mathrm{KL}}(p||\pi_{\theta}) < D_{\mathrm{KL}}(p||q)$ then

7: $q \leftarrow \pi_{\theta}$

Output: π_{θ}

Proposal q is "adaptively" evolving to improve samples and therefore accelerates convergence Parshakova et al., 2019

Constraints take the form: $\mathbb{E}_{x\sim p}\phi(x)=1.0$

$$\mathbb{E}_{x\sim p}\phi(x)=1.0$$

i.e impose on each individual sample

Single-word constraints: e.g. "Canada", "Vampire", "Paris", "Wikileaks"

Word list constraints: e.g used for topic control: politics, computers, fantasy.

Discriminators / Classifiers: sentiment (+/-), Clickbait.

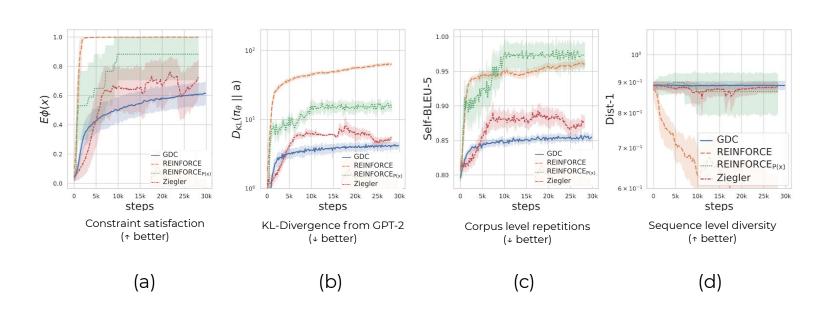
Baselines

- REINFORCE with reward
- REINFORCE with reward $P(x) = a(x)e^{\sum_i \lambda_i \phi_i(x)}$
- (Ziegler et al., 2020) PPO with reward $\phi(x) - \beta D_{\mathrm{KL}}(\pi_{\theta}, a)$

We compare with more baselines in the paper!

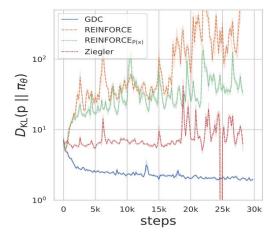
KL penalty to control deviations from the original LM.

We plot the evolution of 5 metrics averaged across 17 different pointwise experiments.



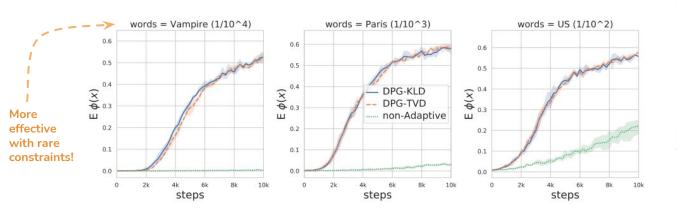
We plot the evolution of 5 metrics averaged across 17 different pointwise experiments.

GDC is steadily approaching p

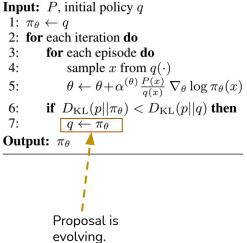


KL-Divergence from optimal policy p This is the most telling evaluation metric (↓ better)

Adaptivity = Faster Convergence



Algorithm 2 KL-Adaptive DPG

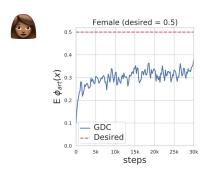


Experiments (distributional constraints)

- Fine-tuned GPT-2 to generate biographies.
- Model is biased only 7% are female biographies.
- Can we de-bias it?

A Single Distributional Constraint: $~~\mathbb{E}_{x\sim p}\phi_{she}=0.5$

		Desired	Before	After
1	Female	50%	07.4%	36.7%



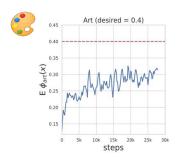
Experiments (distributional constraints)

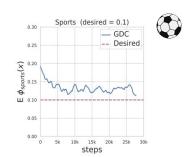
Multiple Distributional Constraints

$$egin{aligned} \mathbb{E}_{x\sim p}\phi_{art} &= 0.4 \ \mathbb{E}_{x\sim p}\phi_{science} &= 0.4 \ \mathbb{E}_{x\sim p}\phi_{business} &= 0.1 \ \mathbb{E}_{x\sim p}\phi_{sports} &= 0.1 \end{aligned}$$

	Desired	Before	After
Art	40% ↑	10.9%	↑ 31.6%
Science	40% ↑	01.5%	↑ 20.1%
Business	10% ↓	10.9%	↓ 10.2%
Sports	10% ↓	19.5%	↓ 11.9% ▮

GDC is working well in both directions ↑/↓





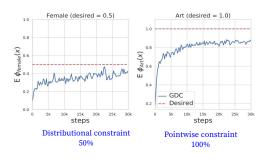
Experiments (hybrid constraints)

Combine pointwise with distributional constraints

$$egin{aligned} \mathbb{E}_{x\sim p}\phi_{she} &= 0.5 \ \mathbb{E}_{x\sim p}\phi_{art} &= 1.0 \end{aligned}$$

$$\mathbb{E}_{x\sim p}\phi_{art}=1.0$$

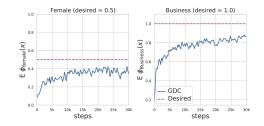
		Desired	Before	After	
4	Female	50%	07.4%	36.6%	
	Art	100%	11 4%	88.6%	



$$\mathbb{E}_{x\sim p}\phi_{she}=0.5$$
 $\mathbb{E}_{x\sim p}\phi_{business}=1.0$

$$\mathbb{E}_{x \sim p} \phi_{business} = 1.0$$

		Desired	Before	After	
5	Female	50%	07.4%	37.7%	
	Business	100%	10.1%	82.4%	



Conclusion

In this work:

- We introduce GDC, a framework that allows the specification of both pointwise and distributional requirements on Pre-trained Language Models.
- Instead of maximizing a reward, GDC seeks a distribution that has minimal divergence from the initial LM.
- Experiments shows GDC's superiority in imposing pointwise constraints compared to strong RL baselines.
- We also demonstrate its capability to impose distributional constraints and one possible application: de-biasing a PLM.