# HIDIO: Hierarchical RL by Discovering Intrinsic Options

Jesse Zhang<sup>1\*</sup>, Haonan Yu<sup>2\*</sup>, Wei Xu<sup>2</sup>







#### Motivation

Complex, sparse-reward tasks are difficult with RL!



Easier exploration through increasing temporal abstraction

Lower-level policies can represent useful skills (options) for a given task



Manual design of task decomposition

Utilizing pre-defined options







#### Contribution: HIDIO

- Discovers task-agnostic options in a self-supervised manner while learning to utilize them to solve the task
- No assumptions about task structure or option type
- Better sample efficiency and final performance than other methods



### Contribution: HIDIO





# How to learn task agnostic options?

- The worker  $\pi_{\phi}$  should help the scheduler *explore* 
  - Maximize worker entropy  $H(\pi_{\phi}(a|\bar{s},\bar{a},u))$
- Options should be uniquely determined
  - Minimize the entropy of options conditioned on the worker's inputs:  $H(p(u|\bar{s},\bar{a}))$
  - $p(u|\bar{s},\bar{a})$  intractable, learn a discriminator  $q_{\psi}(u|\bar{s},\bar{a})$  instead

$$\max_{\phi,\psi} H\left(\pi_{\phi}(a|\bar{s},\bar{a},u)\right) - H\left(q_{\psi}(u|\bar{s},\bar{a})\right)$$

$$r^{low} \coloneqq \log q_{\psi} - \beta \log \pi_{\phi}$$



### Contribution: HIDIO





## Discriminator Instantiations

How to learn  $q_{\psi}$ ?

$$\max_{\psi} \log q_{\psi}(u_t | \bar{s}, \bar{a}) = \max_{\psi} -||f_{\psi}(\bar{s}, \bar{a}) - u_t||$$

| Feature Extractor        | Formulation $f_{\psi}$ (MLP = Multi-Layer Perceptron) | Explanation                  |
|--------------------------|-------------------------------------------------------|------------------------------|
| State <sup>1</sup>       | $MLP(s_t)$                                            | Current State                |
| Action                   | $MLP([s_0, a_t])$                                     | Action + first state         |
| StateDiff                | $MLP(s_t - s_{t-1})$                                  | Difference between states    |
| StateAction              | $MLP([a_{t-1}, s_t])$                                 | Action + current state       |
| StateConcat <sup>2</sup> | $MLP([\bar{s}_{0:t}])$                                | States so far                |
| ActionConcat             | $MLP([s_0, \bar{a}_{0:t-1}])$                         | Actions so far + first state |



<sup>&</sup>lt;sup>2</sup>Unsupervised control through non-parametric discriminative rewards, Warde-Farley et al. 2019; Dynamics-aware unsupervised discovery of skills, Sharma et al. 2019; Variational option discovery algorithms, Achiam et al. 2018



### Sparse-Reward Environments



### Methods Compared

- SAC: Soft Actor-Critic
- SAC+ActRepeat: Soft Actor-Critic with the same temporal abstraction as ours
- HiPPO: Sub-Policy Adaptation for Hierarchical RL
- HIRO: Data-Efficient Hierarchical RL
- Action: HIDIO with Action feature extractor
- StateAction: HIDIO with StateAction feature extractor
- StateDiff: HIDIO with StateDiff feature extractor



### Pusher and Reacher











### GoalTask





### KickBall





### Summary

#### • HIDIO

- Discovers diverse options while jointly learning to utilize them to solve a given sparse-reward task
- Options are task-agnostic: no assumptions about task structure
- Performs better than flat RL and other hierarchical RL methods

