Representation Learning for Sequence Data with Deep Autoencoding Predictive Components

JUNWEN BAI, WEIRAN WANG, YINGBO ZHOU, CAIMING XIONG
ICLR 2021

Motivation

- Self-supervised learning is trending in sequence representation learning field
- Keys
 - the structure imposed on the latent sequential space
 - information retained in the representations
- Our goals
 - learn latent sequential representations that exhibit a simple structure
 - And retain useful information from inputs

DAPC

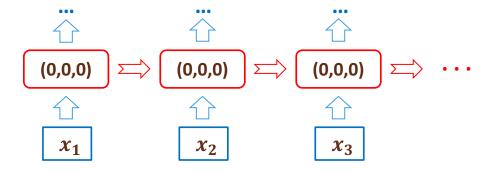
- We propose deep autoencoding predictive components (DAPC) learning
- Major take-aways
 - DAPC models mutual information between past and future (predictive information or PI)
 - PI estimation is exact under Gaussian assumption (simple structure)
 - Learning of DAPC is regularized by masked reconstruction (input information)

Method

- Given a time series data $X = \{x_1, x_2, ...\}$ where $x_t \in \mathbb{R}^n$ and its corresponding latent sequence $Z = \{z_1, z_2, ...\}$ where $z_t \in \mathbb{R}^d$
- $Z_{past} = (z_{-T+1}, ..., z_0)$ and $Z_{future} = (z_1, ..., z_T)$
- Predictive information (PI) is the MI between Z_{past} and Z_{future}
 - $MI(Z_{past}, Z_{future}) = H(Z_{past}) + H(Z_{future}) H(Z_{past}, Z_{future})$
- $MI(Z_{past}, Z_{future}) = \ln |\Sigma_T(Z)| \frac{1}{2} \ln |\Sigma_{2T}(Z)|$
 - Gaussian assumption
 - $\Sigma_T(Z)$ is the covariance matrix of the length-T Gaussian distribution

Method

- Encode x_i to z_i through neural networks (RNN, Transformer, ...)
- If we only use PI as objective, powerful neural networks might learn trivial latent codes (see below) since this would give very high PI

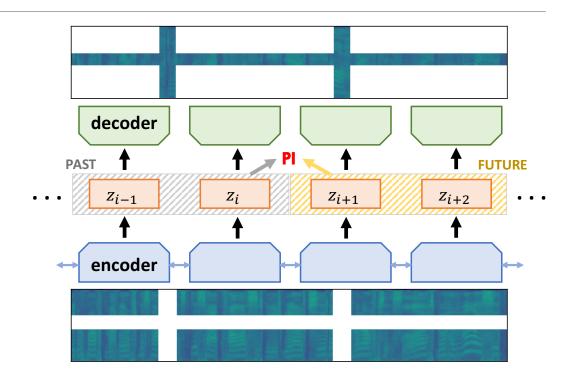


Our solution: regularize the learning with masked reconstruction

Method

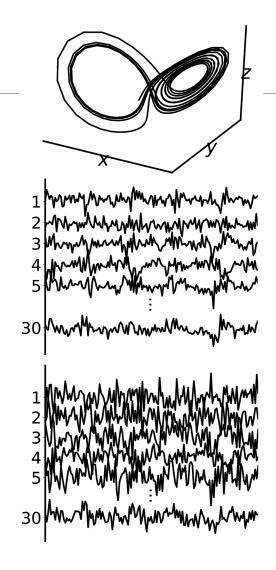
- Masked Reconstruction
 - encoder: $e(\cdot)$
 - decoder: $g(\cdot)$
 - mask inputs
 - reconstruct the masked portion

•
$$R = \left| \left| (1 - M) \odot \left(X - g(e(X \odot M)) \right) \right| \right|_{2}^{2}$$

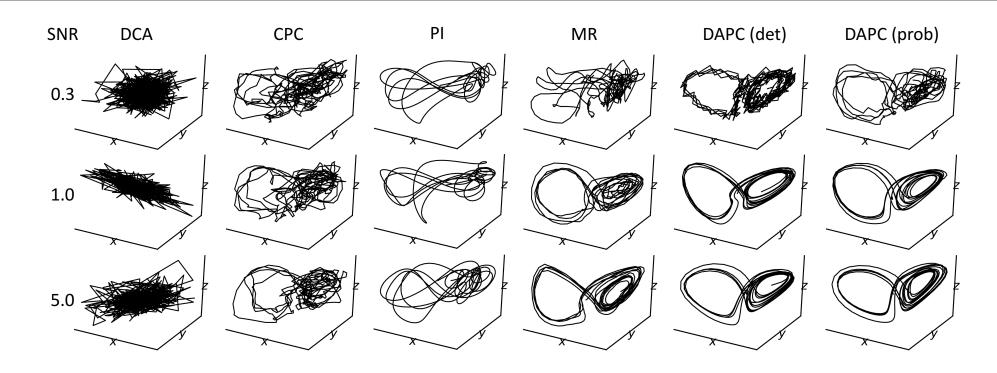


Lorenz Attractor

- Lorenz Attractor is 3-d time series data
- We non-linearly lift the 3-d data to 30-d data with a random NN of 2 hidden layers and further add white noise
- Task: recover the 3-d ground-truth Lorenz Attractor from the 30-d data without any supervision



Lorenz Attractor



• Other domains with the same setup: weather, biology, etc.

Automatic Speech Recognition

- To show DAPC is scalable, we apply it on 2 speech corpus, WSJ and LibriSpeech
- Competitive results compared with other SOTA representation learning methods

Methods	dev93	eval92	
Finetune on 15 hours			
w.o. pretrain	12.91	8.98	
DAPC	12.31	7.74	
DAPC + multi-scale PI	12.15		
DAPC + shifted recon	11.93		
DAPC + both	11.57	7.34	

Methods	WER (%)
wav2vec [8]	6.92
discrete BERT+vq-wav2vec [38]	4.5
wav2vec 2.0 [12]	2.3
DeCoAR [43]	6.10
TERA-large [44]	5.80
w.o. pretrain	5.11
MR	5.02
DAPC	4.86
DAPC+multi-scale PI+shifted recor	4.70

Q&A

Thanks for listening!