Autoregressive Models for Offline Policy Evaluation + Optimization

Michael R. Zhang, Tom Le Paine, Ofir Nachum, Cosmin Paduraru, George Tucker, Ziyu Wang, Mohammad Norouzi

Motivation

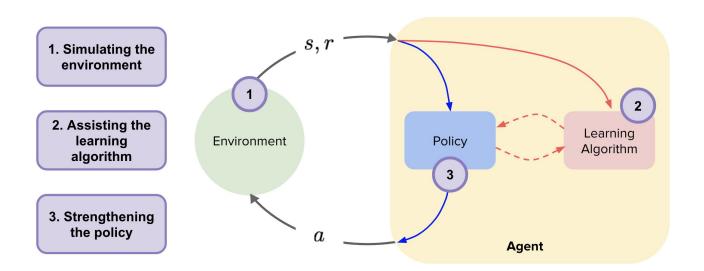
- Model-based RL has been shown to improve sample efficiency on various control tasks
- Goal is to improve dynamics and rewards models by making predictions in autoregressive way

Deep reinforcement learning in a handful of trials using probabilistic dynamics models (Chua et al. 2018)

When to Trust Your Model: Model-Based Policy Optimization (Janner et al. 2019) Deep Dynamics Models for Learning Dexterous Manipulation (Nagabandi et al 2019)

Motivation

Where does the model fit into the picture?



From "Tutorial on Model-Based Methods in Reinforcement Learning" (Mordatch and Hamrick) see also: "Objective Mismatch in Model-based Reinforcement Learning" (Lambert et al.)

Tackle RL using generative models of the dynamics

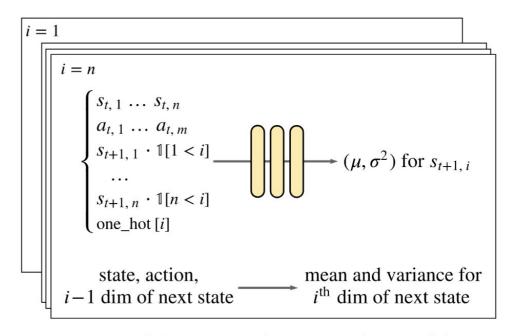
- Given a dataset of (s, a, r', s') tuples, a.k.a. replay buffer, train a conditional generative model of (s, a) → (r', s'), i.e., p(r', s'| s, a), and use it for policy evaluation and policy optimization.
- Dynamics: (state, action) → (reward, next state)
 (s, a) → (r', s')

Feedforward dynamics model

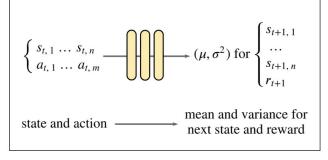
$$\begin{cases} s_{t,1} \dots s_{t,n} \\ a_{t,1} \dots a_{t,m} \end{cases} \xrightarrow{(\mu, \sigma^2)} \text{ for } \begin{cases} s_{t+1,1} \\ \dots \\ s_{t+1,n} \\ r_{t+1} \end{cases}$$
state and action
$$\xrightarrow{\text{mean and variance for next state and reward}}$$

Standard Feedforward Dynamics Models

Autoregressive dynamics model



Proposed Autoregressive Dynamics Model

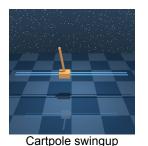


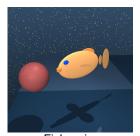
Standard Feedforward Dynamics Models

Continuous control tasks

Summary of the offline datasets used. Dataset size indicates the number of (s, a, r', s') tuples.

	cartpole swingup	cheetah run	finger turn hard			walker stand		manipulator insert ball	manipulator insert peg
State dim.	5	17	12	24	67	24	24	44	44
Action dim.	1	6	2	5	21	6	6	5	5
Dataset size	40K	300K	500K	200K	3 M	200K	200K	1.5M	1.5M





un Walker walk/ stand Fish swim Manipulator insert ball

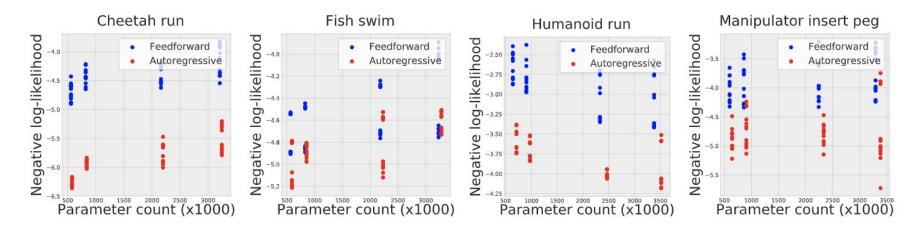
RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning (Gulchere et al.) Benchmarks for Deep Off-Policy Evaluation (Fu et al.)

Autoregressive models have better inductive biases

Negative log-likelihood on heldout validation sets for different tasks (lower is better).

Dynamics model architecture	cartpole swingup	cheetah run	finger turn hard			walker stand	walker walk	manipulator insert ball	manipulator insert peg
Feedforward Autoregressive	-6.81 -7.21	-4.90 -6.36	-5.58 -6.14	-4.91 -5.21	-3.42 -4.18	-4.52 -4.73	-3.84 -4.17	-4.74 -5.62	-4.34 -5.73
Feedforward Autoregressive	-6.75 -7.14	-4.85 -6.32	-5.50 -5.94	-4.90 -5.18		-4.49 -4.71	-3.81 -4.15	-4.64 -5.58	-4.31 -5.29

Autoregressive models have better inductive biases



Validation negative log-likelihood vs. parameter count for autogressive and feedforward models. Autoregressive models often have a lower validation NLL irrespective of parameter count.

Model-based Off-policy Evaluation

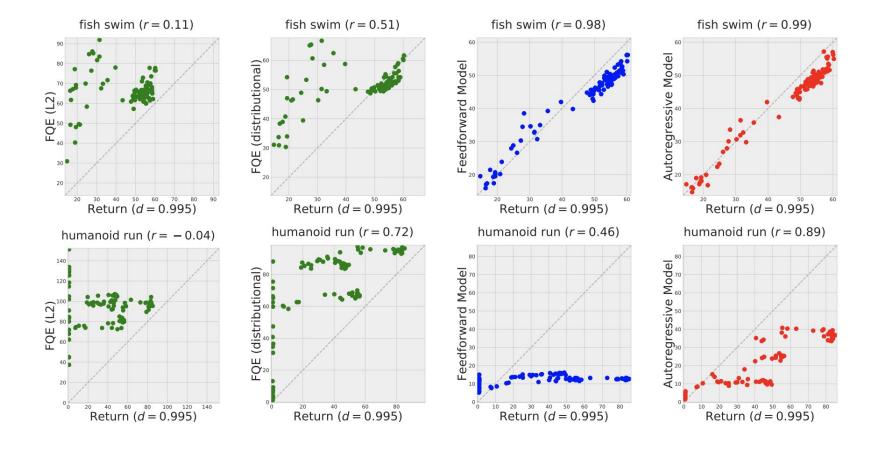
Train a generative model of dynamics, **p(r', s'| s, a)**, once, and use it for evaluating as many policies as you want.

$$\mathbf{s} \xrightarrow{\pi} \mathbf{a} \xrightarrow{p} \mathbf{r'}, \mathbf{s'} \xrightarrow{\pi} \dots$$

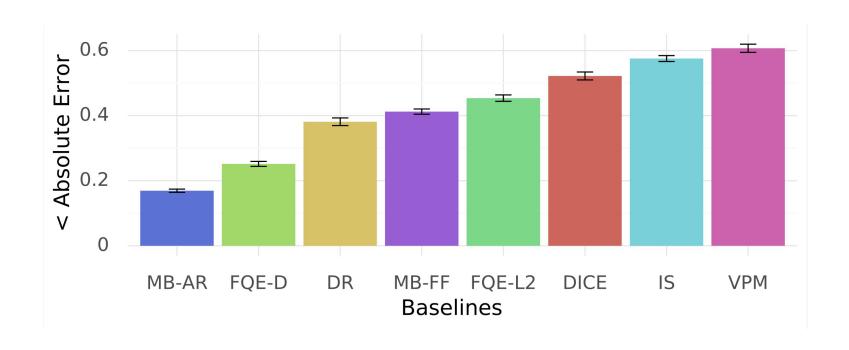
Algorithm 1 Model-based OPE

```
Require: Number of rollouts n, discount
   factor \gamma, horizon length H, policy \pi, dy-
   namics model p, set of initial states S_0
  for i = 1, 2, ... n do
      R_i \leftarrow 0
      sample initial state s_0 \sim S_0
      for t = 0, 1, 2, \dots, H - 1 do
         sample from policy: a_t \sim \pi(\cdot \mid s_t)
         sample from the dynamics model:
                    s_{t+1}, r_{t+1} \sim p(\cdot, \cdot \mid s_t, a_t)
         R_i \leftarrow R_i + \gamma^t r_{t+1}
      end for
  end for
  return \frac{1}{n} \sum_{i=1}^{n} R_i
```

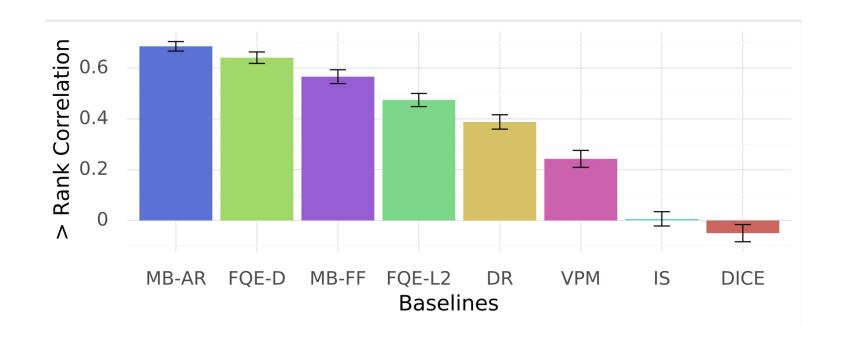
OPE results



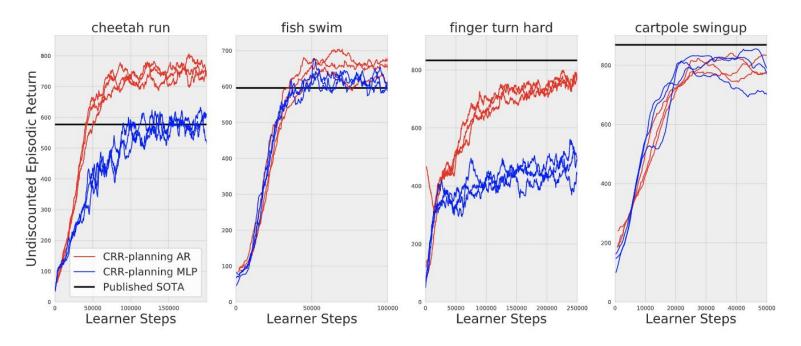
OPE results



OPE results



Can we use dynamics models for policy optimization?



Model-based offline Policy optimization results. With planning and data augmentation, we manage to improve the performance over CRR exp (our baseline algorithm). When using autoregressive dynamics models (CRR-planning AR), we outperform state-of-the-art on Cheetah run and Fish swim.