Regularized Inverse Reinforcement Learning

Wonseok Jeon^{1,2}, Chen-Yang Su^{1,2}, Paul Barde^{1,2}, Thang Doan^{1,2}, Derek Nowrouzezahrai^{1,2}, Joelle Pineau^{1,2,3}

¹Mila - Quebec AI Institute ²McGill University ³Facebook AI Research

ICLR 2021

Agent-Environment Interaction

- Markov Decision Process
 - ► A set of states *S*
 - ► A set of actions A
 - A transition distribution $T(\cdot|s,a) \in \Delta^S (\Delta^X$: A set of probs on X)
 - ▶ A reward function r(s, a)
 - A discount factor γ
 - An initial state distribution $P_0 \in \Delta^S$
- Policy $\pi(\cdot|s) \in \Delta^A$
 - The agent's probability of choosing an action
- Joint distribution
 - $> s_0 \sim P_0, a_i \sim \pi(\cdot|s_i), s_{i+1} \sim T(\cdot|s_i, a_i), i \geq 0.$

Reinforcement Learning

- Return $R = \sum_{i=0}^{\infty} \gamma^i r(s_i, a_i)$.
- Learning objective $\pi_* \in \operatorname{argmax}_{\pi} \mathbb{E}_{\pi}[R]$.
 - Values

$$V_{\pi}(s) = \mathbb{E}_{\pi} \left[R | s_0 = s \right].$$

 $Q_{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim T(\cdot | s, a)} V_{\pi}(s').$

(Unique) optimal Q value

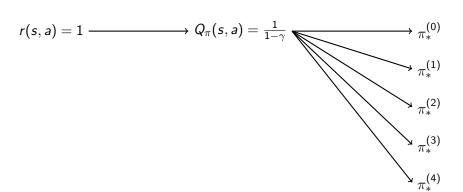
$$Q_*(s,a) = \max_{\pi} Q_{\pi}(s,a), \forall s, a.$$

▶ Optimal policy via greediness $(\langle f, g \rangle = \sum_{a \in A} f(a)g(a))$

$$\max_{\pi(\cdot|s)} \langle \pi(\cdot|s), Q_*(s,\cdot) \rangle$$

Reinforcement Learning

• π_* may not be unique.



Reinforcement Learning

• π_* may not be unique.

$$r(s,a) = 1 \longrightarrow Q_{\pi}(s,a) = \frac{1}{1-\gamma}$$

$$r(s,a) = 2 \longrightarrow Q_{\pi}(s,a) = \frac{2}{1-\gamma}$$

$$r(s,a) = 3 \longrightarrow Q_{\pi}(s,a) = \frac{3}{1-\gamma}$$

$$r(s,a) = 4 \longrightarrow Q_{\pi}(s,a) = \frac{4}{1-\gamma}$$

$$r(s,a) = 5 \longrightarrow Q_{\pi}(s,a) = \frac{5}{1-\gamma}$$

$$\pi_{*}^{(1)}$$

- Regularized return $R^{\Omega} = \sum_{i=0}^{\infty} \gamma^{i}(r(s_{i}, a_{i}) \Omega(\pi(\cdot|s_{i}))).$
 - A strongly convex function $\Omega: \Delta^A \to \mathbb{R}$
- Learning objective $\pi_* \in \operatorname{argmax}_{\pi} \mathbb{E}_{\pi}[R^{\Omega}]$.
 - Values

$$V_{\pi}^{\Omega}(s) = \mathbb{E}_{\pi}\left[R^{\Omega}|s_0=s\right].$$
 $Q_{\pi}^{\Omega}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(\cdot|s,a)} V_{\pi}^{\Omega}(s').$

(Unique) optimal Q value

$$Q_*^{\Omega}(s,a) = \max_{\pi} Q_{\pi}^{\Omega}(s,a), \forall s, a.$$

▶ Optimal policy via greediness $(\langle f, g \rangle = \sum_{a \in A} f(a)g(a))$.

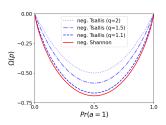
$$\max_{\pi(\cdot|s)} \langle \pi(\cdot|s), Q_*^{\Omega}(s, \cdot) \rangle - \Omega(\pi(\cdot|s))$$

- e.g.,
 - Shannon-entropy-regularized reinforcement learning

$$\Omega(\pi(\cdot|s)) = -H(\pi(\cdot|s))$$

▶ Tsallis-entropy-regularized reinforcement learning (k > 0, q > 1)

$$\Omega(\pi(\cdot|s)) = -T_q^k(\pi(\cdot|s))$$



• The convex conjugate $\Omega^* : \mathbb{R}^A \to \mathbb{R}$ of $\Omega : \Delta^A \to \mathbb{R}$

$$\Omega^*(Q^\Omega_*(s,\cdot)) = \max_{\pi(\cdot|s) \in \Delta^A} \langle \pi(\cdot|s), Q^\Omega_*(s,\cdot) \rangle - \Omega(\pi(\cdot|s)).$$

ightharpoonup For a strongly convex Ω , the maximizer is **unique** and is equal to

$$\pi_*(\cdot|s) = \nabla \Omega^*(Q_*^{\Omega}(s,\cdot)).$$

• π_* is unique! Let $\Omega(\pi(\cdot|s)) = -H(\pi(\cdot|s))$.

$$r(s,a) = 1 \longrightarrow Q_{\pi}^{\Omega}(s,a) = \frac{1}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longrightarrow \pi_{*}(a|s) = \frac{1}{|A|}$$

(Maxium Entropy)

• π_* is unique! Let $\Omega(\pi(\cdot|s)) = -H(\pi(\cdot|s))$.

$$r(s,a) = 1 \longrightarrow Q_{\pi}^{\Omega}(s,a) = \frac{1}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longrightarrow \pi_{*}(a|s) = \frac{1}{|A|}$$

$$r(s,a) = 2 \longrightarrow Q_{\pi}^{\Omega}(s,a) = \frac{2}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \text{(Maxium Entropy)}$$

$$r(s,a) = 3 \longrightarrow Q_{\pi}^{\Omega}(s,a) = \frac{3}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \qquad r(s,a) = 4 \longrightarrow Q_{\pi}^{\Omega}(s,a) = \frac{4}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \qquad r(s,a) = 5 \longrightarrow Q_{\pi}^{\Omega}(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \qquad r(s,a) = 5 \longrightarrow Q_{\pi}^{\Omega}(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \qquad r(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \qquad r(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \qquad r(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \qquad r(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \qquad r(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \qquad r(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \qquad r(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \qquad \qquad r(s,a) = \frac{1}{|A|} \qquad r(s,$$

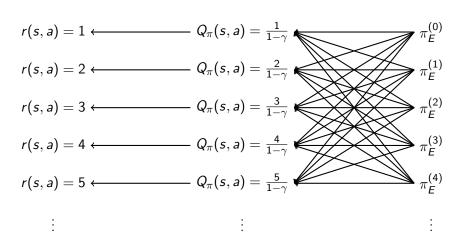
Inverse Reinforcement Learning [Ng et al., ICML 2000]

- Expert Policy $\pi_F(\cdot|s) \in \Delta^A$
 - ► The expert's probability of choosing an action
- Return $R(\mathbf{r}) = \sum_{i=0}^{\infty} \gamma^i \mathbf{r}(s_i, a_i)$.
- Learning objective

$$\mathit{IRL}(\pi_E) := \operatorname{argmax}_{\substack{r \in \mathbb{R}^{S \times A} \\ \text{expert's} \\ \text{return}}} \left\{ \underbrace{\mathbb{E}_{\pi_E}[R(r)]}_{\substack{\text{optimal} \\ \text{return}}} - \underbrace{\mathbb{E}_{\pi}[R(r)]}_{\substack{\text{optimal} \\ \text{return}}} \right\}.$$

Inverse Reinforcement Learning [Ng et al., ICML 2000]

- IRL has degenerate solutions.
 - Constant rewards are IRL solutions for any policies.



- Expert Policy $\pi_E(\cdot|s) \in \Delta^A$
 - ► The expert's probability of choosing an action
- Regularized return $R^{\Omega} = \sum_{i=0}^{\infty} \gamma^{i} (r(s_{i}, a_{i}) \Omega(\pi(\cdot|s_{i}))).$
- Learning objective

$$\mathit{IRL}(\pi_E) := \operatorname{argmax}_{r \in \mathbb{R}^{S \times A}} \left\{ \underbrace{\mathbb{E}_{\pi_E}[R^\Omega(r)]}_{\substack{\text{expert's} \\ \text{regularized} \\ \text{return}}} - \underbrace{\max_{\pi} \mathbb{E}_{\pi}[R^\Omega(r)]}_{\substack{\text{optimal} \\ \text{regularized} \\ \text{return}}} \right\}.$$

- Regularized IRL does not suffer from degeneracy.
 - Constant rewards correspond to uniform policy, e.g., $\Omega = -H$

$$r(s,a) = 1 \longleftarrow Q_{\pi}^{\Omega}(s,a) = \frac{1}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longleftarrow \pi_{E}(a|s) = \frac{1}{|A|}$$

$$r(s,a) = 2 \longleftarrow Q_{\pi}^{\Omega}(s,a) = \frac{2}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longleftarrow r(s,a) = 3 \longleftarrow Q_{\pi}^{\Omega}(s,a) = \frac{3}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longleftarrow r(s,a) = 4 \longleftarrow Q_{\pi}^{\Omega}(s,a) = \frac{4}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longleftarrow r(s,a) = 5 \longleftarrow Q_{\pi}^{\Omega}(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longleftarrow r(s,a) = 5 \longleftarrow Q_{\pi}^{\Omega}(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longleftarrow r(s,a) = 5 \longleftarrow Q_{\pi}^{\Omega}(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longleftarrow r(s,a) = 5 \longleftarrow Q_{\pi}^{\Omega}(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longleftarrow r(s,a) = 5 \longleftarrow Q_{\pi}^{\Omega}(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longleftarrow r(s,a) = 5 \longleftarrow Q_{\pi}^{\Omega}(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longleftarrow r(s,a) = 5 \longleftarrow Q_{\pi}^{\Omega}(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longleftarrow r(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}^{\infty} \gamma^{i} H(\pi(\cdot|s_{i})) \longrightarrow r(s,a) = \frac{5}{1-\gamma} + \sum_{i=1}$$

Motivation

- Tractable solutions for regularized inverse RL?
- An algorithm to derive learn a solution?

A Solution of Regularized IRL

Theorem (A Solution of Regularized IRL)

$$t(s, a; \pi_E) = [\nabla \Omega(\pi_E(\cdot|s))]_a - \langle \pi_E(\cdot|s), \nabla \Omega(\pi_E(\cdot|s)) \rangle + \Omega(\pi(\cdot|s)).$$

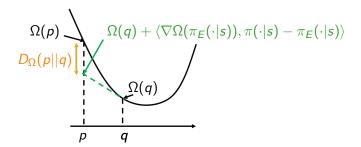
A Solution of Regularized IRL

Theorem (A Solution of Regularized IRL)

$$t(s, a; \pi_E) = [\nabla \Omega(\pi_E(\cdot|s))]_a - \langle \pi_E(\cdot|s), \nabla \Omega(\pi_E(\cdot|s)) \rangle + \Omega(\pi(\cdot|s)).$$

• Proof. For Bregman divergence $D_{\Omega}(p||q)$,

$$\mathrm{argmax}_{\pi} \, \mathbb{E}_{\pi}[R^{\Omega}(t(\cdot,\cdot;\pi_E))] = \mathrm{argmin}_{\pi} \, \mathbb{E}_{\pi} \left[\textstyle \sum_{i=0}^{\infty} \gamma^i \frac{D_{\Omega}(\pi(\cdot|s_i)||\pi_E(\cdot|s_i))}{|\pi_E(\cdot|s_i)|} \right] = \pi_E$$



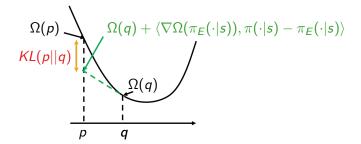
A Solution of MaxEnt IRL [Ziebart et al., 2008, Ho et al., 2016]

Theorem (A Solution of Regularized IRL)

$$t(s, a; \pi_E) = [\nabla \Omega(\pi_E(\cdot|s))]_a - \langle \pi_E(\cdot|s), \nabla \Omega(\pi_E(\cdot|s)) \rangle + \Omega(\pi(\cdot|s)).$$

• Proof. For KL divergence KL(p||q), $t(s, a; \pi_E) = \log \pi_E(a|s)$.

$$\mathrm{argmax}_{\pi} \, \mathbb{E}_{\pi}[R^{\Omega}(t(\cdot,\cdot;\pi_{E}))] = \mathrm{argmin}_{\pi} \, \mathbb{E}_{\pi} \left[\textstyle \sum_{i=0}^{\infty} \gamma^{i} \mathit{KL}(\pi(\cdot|s_{i})||\pi_{E}(\cdot|s_{i})) \right] = \pi_{E}$$



Optimal Advantage Function

Theorem (A Solution of Regularized IRL)

$$\underbrace{\mathbf{t}(s, a; \pi_{E})}_{A_{\pi_{E}}^{\Omega}(s, a)} = \underbrace{\left[\nabla\Omega(\pi_{E}(\cdot|s))\right]_{a}}_{Q_{\pi_{E}}^{\Omega}(s, a)} - \underbrace{\left\{\left\langle\pi_{E}(\cdot|s), \nabla\Omega(\pi_{E}(\cdot|s))\right\rangle - \Omega(\pi(\cdot|s))\right\}}_{V_{\pi_{E}}^{\Omega}(s)}.$$

Additional Solutions via Reward Shaping [Ng et al., 1999]

Theorem (Potential-based reward shaping)

Let π^* be the optimal policy of regularized RL with a reward $r \in \mathbb{R}^{S \times A}$. Then for $\Phi \in \mathbb{R}^S$, using

$$r_{\Phi}(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim T(\cdot | s, a)} \Phi(s') - \Phi(s)$$

as a reward also leads to π^* .

Regularized IRL in Continuous Control

- Tractable when
 - \blacktriangleright $\pi_E(\cdot|s)$ follows independent normal distributions.
 - ▶ Negative Tsallis entropy regularizer $\Omega(\pi(\cdot|s)) = -T_q^k(\pi(\cdot|s))$

Regularized IRL in Continuous Control

- If $\pi(\cdot|s)$ follows independent normal distributions, the Bregman divergence is also tractable.
 - \bullet $\pi = \mathcal{N}(\mu, \sigma^2)$ and $\pi_E = \mathcal{N}(0, (e^{-3})^2)$
 - ▶ For larger q, means and variances are matched more tightly.

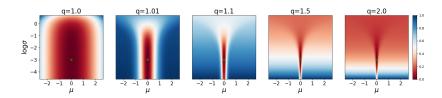


Figure: Bregman divergence $D_{\Omega}(\pi||\pi_E)$

Algorithmic Consideration

Algorithm 1 Regularized Adversarial IRL(RAIRL)

- 1: Expert demonstration $\mathcal{D}_{E} \sim \pi_{E}$.
- 2: for each iteration do
- 3: $\mathcal{D}_{\pi} := \{(s,a)\} \sim \pi$.
- 4: Reward learning (binary classification)

$$\max_{\mathbf{r} \in \mathbb{R}^{S \times A}} \mathbb{E}_{(s,a) \sim \mathcal{D}_E} \log D_{\mathbf{r},\pi}(s,a) + \mathbb{E}_{(s,a) \sim d_{\pi}} \log(1 - D_{\mathbf{r},\pi}(s,a))$$
$$D_{\mathbf{r},\pi}(s,a) = \sigma(\mathbf{r}(s,a) - t(s,a;\pi))$$

5: Policy optimization via Regularized Actor Critic [Yang et al., NeurIPS 2019]:

$$\max_{\pi} \mathbb{E}[R^{\Omega}(\mathbf{r})|\pi]$$

- 6: end for
- 7: Output: π_E , $t(s, a; \pi_E)$.

Experiments

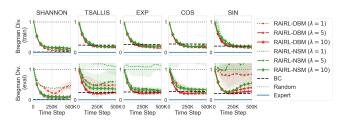


Figure: BermudaWorld (Continuous Observation, Discrete Action)

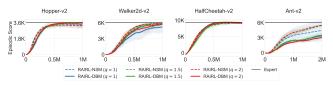


Figure: MuJoCo (Continuous Observation, Continuous Action)

For more information, please check our paper and poster!

Poster Session 3 May 3rd, 2021, 5 pm-7 pm (PDT)

