

Continual Learning in Recurrent Neural Networks

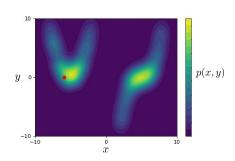
ICLR 2021

Benjamin Ehret*, Christian Henning*, Maria R. Cervera* Alexander Meulemans, Johannes von Oswald, Benjamin Grewe

Introduction

Continual learning (CL):

How can we learn a set of tasks $\mathcal{D}_1, \ldots, \mathcal{D}_T$ sequentially without obtaining i.i.d. samples from the overall joint p(x,y)



CL in RNNs:

Most CL research has been done in feedforward networks, from which **RNNs** differ in two main ways:

- hidden-to-hidden weights are sequentially reused over time
- working memory is needed for solving the tasks

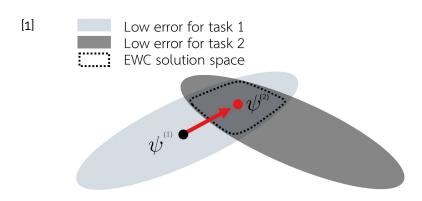
Open questions:

Can existing methods to prevent catastrophic forgetting be used off-the-shelf for RNNs? In particular, does any of the two factors above have a particular effect on CL?

Weight-importance methods in RNNs I

Weight-importance methods (e.g. EWC):

Weights are assigned **importance values** for the current task, which affect their **rigidity** for future updates.

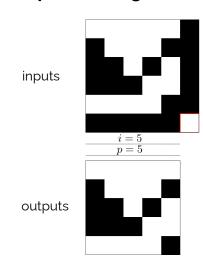


Affected by the **stability-plasticity** dilemma.

[1] Adapted from Kirkpatrick et al. "Overcoming catastrophic forgetting in neural networks." PNAS (2017)

Copy task:[2]

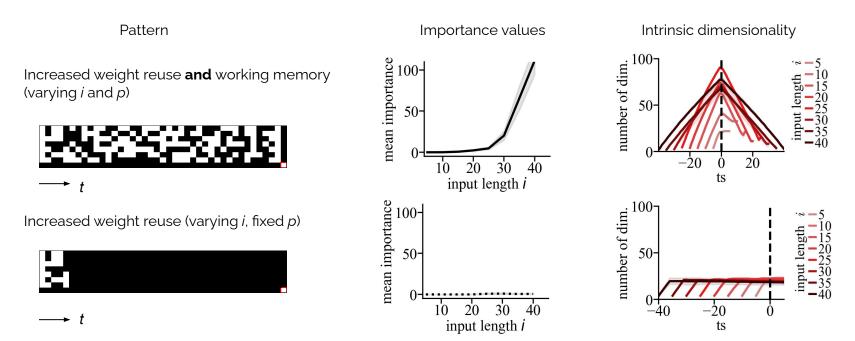
Synthetic dataset that allows us to disentangle working memory requirements from bare sequence length.



[2] Adapted from Graves, Alex, et al. "Neural Turing Machines." arXiv, 2014

Weight-importance methods in RNNs II

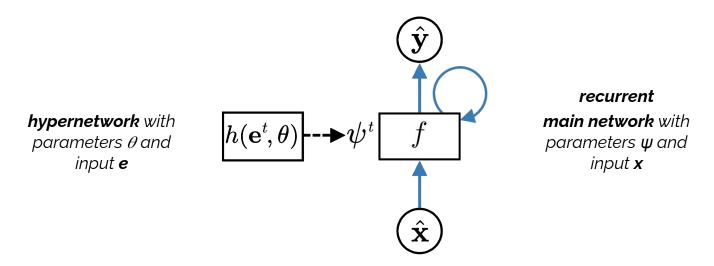
We train networks on single tasks with varying pattern and input lengths.



Higher working memory requirements (not weight reuse) lead to increased weight-importance values.

Hypernetworks for CL in RNNs

A hypernetwork h generates the weights ψ of another neural network f. **Task-specific weights** can be generated by a single shared hypernetwork. CL is shifted to the hypernetwork, and forgetting is prevented with a simple regularizer.



The hypernetwork is in theory **agnostic** to the recurrent nature of the task. Can a feedforward hypernetwork successfully protect a recurrent main model?

Experiments

We systematically compared the performance of different CL methods in RNNs.

We considered a variety of **benchmarks**:

Audiosot	,
Addioset	•

- Copy Task variants
- SplitSMNIST
- Multilingual PoS tagging

م ا <u>م</u> ما ۸		5		
Ana a	a variety	/ OI m	etnc)as:

	during	final
Multitask	N/A	77.31 ± 0.10
From-scratch	N/A	79.06 ± 0.11
Fine-tuning	71.95 ± 0.24	49.02 ± 1.00
HNET	73.05 ± 0.45	71.76 ± 0.62
Online EWC	68.82 ± 0.20	65.56 ± 0.35
SI	67.66 ± 0.10	66.92 ± 0.04

We experimentally verified that:

- In weight-importance methods, the stability-plasticity dilemma is aggravated by high working memory requirements
- A CL solution based on hypernetworks can partially overcome this limitation.

Summary & Acknowledgements

- RNNs are affected by catastrophic forgetting in unique ways
- We analysed the use of weight-importance methods for CL in RNNs
 - Working memory requirements directly affect CL
- A systematic comparison of a variety of CL methods in several datasets established that:
 - o Despite the mentioned shortcomings, weight-importance methods often remain competitive
 - An approach based on hypernetworks is, however, preferable for CL in RNNs

Thanks to all co-authors

Benjamin Ehret

Christian Henning

Maria R. Cervera

Alexander Meulemans

Johannes von Oswald

Benjamin F. Grewe

Thank you