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System 2 Deep Learning (Bengio, 2019) – need for modern DL
Neural networks with ability to reason over and above perception.

● NLM: Neural Logic Machines [Dong et al., 2019]
● RRN: Recurrent Relational Networks [Palm et al., 2018]
● SATNet: Bridging deep learning and logical reasoning … [Wang et al., 2019]

Discover and implicitly encode logical relationships in structured output spaces

Neural Networks for Symbolic 
Reasoning
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Solution Multiplicity
Many correct solutions for any given input.
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Solution Multiplicity
Many correct solutions for any given input.
Interested in any one solution with no preference.
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Solution Multiplicity
● Most neural models - trained and tested over unique solution puzzles.

● Completely ignore the issue of solution multiplicity.

Recurrent Relation Network – SOTA neural Sudoku solver
● Solves 96% unique solution puzzles
● But only 24% multiple solution puzzles
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Solution Multiplicity

● Explicit modeling required to represent this solution multiplicity.

● Real world reasoning problems may have multiple solutions.
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Overview

●Problem formulation – One of Many Learning (1oML)
●Naïve Solutions: NaïveLoss, CC-Loss

●Multiplicity Aware Loss Function: Lw

●Optimization Techniques

■ Greedy – MinLoss

■ Exploration Based: IExplR and SelectR

●Experiments 
○ Three domains 
○ Two reasoning models
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Naïve Loss
● Parameterize     as 
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Naïve Loss
● Parameterize     as 

● Penalizes the model even if prediction is correct!
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Greedily chooses w for each example based on current Θ
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Greedily chooses w for each example based on current Θ

Locally optimal choices might not be globally optimal.

Greedy Optimization: MinLoss
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Exploration based Optimization

Select non-greedy targets with non-zero probability

IExplR: 

SelectR: 
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Exploration based Optimization

Select non-greedy targets with non-zero probability

IExplR: Use                           as exploration probability

SelectR: Use an RL agent to get exploration probability 
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Exploration based Optimization: SelectR
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● Futoshiki

● Sudoku

NLM
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Experiments

40



Results

Mean test accuracy over three runs for MinLoss and SelectR compared with baselines.
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Naïve Unique Random CC-Loss MinLoss IExplR SelectR

NQueens
OS 70.59 75.09 72.91 75.31 77.29 77.35 79.73
MS 55.34 66.85 61.13 75.76 77.22 79.46 79.68

Overall 68.04 73.72 70.94 75.39 77.28 77.70 79.72

Futoshiki
OS 65.59 67.63 65.49 77.68 76.78 78.15 78.01
MS 14.99 19.13 14.22 69.30 70.35 70.88 71.57

Overall 52.96 55.53 52.70 75.59 75.18 76.33 76.40

Sudoku
OS 87.85 89.19 87.53 88.26 88.25 88.73 88.69
MS 9.13 66.39 13.65 76.58 76.93 80.19 81.73

Overall 48.49 77.79 50.59 82.42 82.59 84.46 85.21



Questions?
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Poster Session 11

6th May 2021

9:00 am to 11:00 am PDT

Resources:
 

https://sites.google.com/view/yatinnandwani/1oml



47


