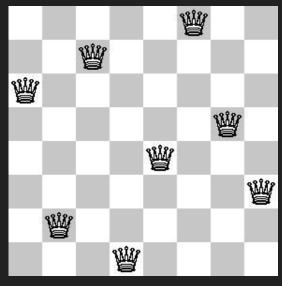


10ML


Neural Learning of One-of-Many Solutions for Combinatorial Problems in Structured Output Spaces

Yatin Nandwani, Deepanshu Jindal, Mausam & Parag Singla Department of Computer Science & Engineering Indian Institute of Technology Delhi, INDIA

System 2 Deep Learning (Bengio, 2019) – need for modern DL Neural networks with ability to reason over and above perception.

System 2 Deep Learning (Bengio, 2019) – need for modern DL Neural networks with ability to reason over and above perception.

5	3			7							
6			1	9	5						
	9	8					6				
8				6				3			
8 4 7			8		3			6			
7				2				6			
	6					2	8				
			4	1	9			5			
				8			7	9			
	Sudoku										

N-Queens

System 2 Deep Learning (Bengio, 2019) – need for modern DL Neural networks with ability to reason over and above perception.

• NLM: Neural Logic Machines [Dong et al., 2019]

System 2 Deep Learning (Bengio, 2019) – need for modern DL Neural networks with ability to reason over and above perception.

- NLM: Neural Logic Machines [Dong et al., 2019]
- RRN: Recurrent Relational Networks [Palm et al., 2018]

System 2 Deep Learning (Bengio, 2019) – need for modern DL Neural networks with ability to reason over and above perception.

- NLM: Neural Logic Machines [Dong et al., 2019]
- RRN: Recurrent Relational Networks [Palm et al., 2018]
- SATNet: Bridging deep learning and logical reasoning ... [Wang et al., 2019]

System 2 Deep Learning (Bengio, 2019) – need for modern DL Neural networks with ability to reason over and above perception.

- NLM: Neural Logic Machines [Dong et al., 2019]
- RRN: Recurrent Relational Networks [Palm et al., 2018]
- SATNet: Bridging deep learning and logical reasoning ... [Wang et al., 2019]

Discover and implicitly encode logical relationships in structured output spaces

2	9	5	7	4	3	8	6	1
4	3	1	8	6	5	9		
8	7	6	1	9	2	5	4	3
3	8	7	4	5	9	2	1	6
6	1	2	3	8	7	4	9	5
5	4	9	2	1	6	7	3	8
7	6	3	5	3	4	1	8	9
9	2	8	6	7	1	3	5	4
1	5	4	9	3	8	6		

2	9	5	7	4	3	8	6	1
4	3	1	8	6	5	9		
8	7	6	1	9	2	5	4	3
3	8	7	4	5	9	2	1	6
6	1	2	3	8	7	4	9	5
5	4	9	2	1	6	7	3	8
7	6	3	5	3	4	1	8	9
9	2	8	6	7	1	3	5	4
1	5	4	9	3	8	6		

2	9	5	7	4	3	8	6	1
4	3	1	8	6	5	9	2	7
8	7	6	1	9	2	5	4	3
3	8	7	4	5	9	2	1	6
6	1	2	3	8	7	4	9	5
5	4	9	2	1	6	7	3	8
7	6	3	5	3	4	1	8	9
9	2	8	6	7	1	3	5	4
1	5	4	9	3	8	6	7	2

Many correct solutions for any given input.

2	9	5	7	4	3	8	6	1
4	3	1	8	6	5	9		
8	7	6	1	9	2	5	4	3
3	8	7	4	5	9	2	1	6
6	1	2	3	8	7	4	9	5
5	4	9	2	1	6	7	3	8
7	6	3	5	3	4	1	8	9
9	2	8	6	7	1	3	5	4
1	5	4	9	3	8	6		

2	9	5	7	4	3	8	6	1
4	3	1	8	6	5	9	2	7
8	7	6	1	9	2	5	4	3
3	8	7	4	5	9	2	1	6
6	1	2	3	8	7	4	9	5
5	4	9	2	1	6	7	3	8
7	6	3	5	3	4	1	8	9
9	2	8	6	7	1	3	5	4
1	5	4	9	3	8	6	7	2

					_			
2	9	5	7	4	3	8	6	1
4	3	1	8	6	5	9	7	2
8	7	6	1	9	2	5	4	3
3	8	7	4	5	9	2	1	6
6	1	2	3	8	7	4	9	5
5	4	9	2	1	6	7	3	8
7	6	3	5	3	4	1	8	9
9	2	8	6	7	1	3	5	4
1	5	4	9	3	8	6	2	7

Many correct solutions for any given input.

Interested in any one solution with no preference.

2	9	5	7	4	3	8	6	1
4	3	1	8	6	5	9		
8	7	6	1	9	2	5	4	3
3	8	7	4	5	9	2	1	6
6	1	2	3	8	7	4	9	5
5	4	9	2	1	6	7	3	8
7	6	3	5	3	4	1	8	9
9	2	8	6	7	1	3	5	4
1	5	4	9	3	8	6		

2	9	5	7	4	3	8	6	1
4	3	1	8	6	5	9	2	7
8	7	6	1	9	2	5	4	3
3	8	7	4	5	9	2	1	6
6	1	2	3	8	7	4	9	5
5	4	9	2	1	6	7	3	8
7	6	3	5	3	4	1	8	9
9	2	8	6	7	1	3	5	4
1	5	4	9	3	8	6	7	2

2	9	5	7	4	3	8	6	1
4	3	1	8	6	5	9	7	2
8	7	6	1	9	2	5	4	3
3	8	7	4	5	9	2	1	6
6	1	2	3	8	7	4	9	5
5	4	9	2	1	6	7	3	8
7	6	3	5	3	4	1	8	9
9	2	8	6	7	1	3	5	4
1	5	4	9	3	8	6	2	7

- Most neural models trained and tested over unique solution puzzles.
- Completely ignore the issue of solution multiplicity.

- Most neural models trained and tested over unique solution puzzles.
- Completely ignore the issue of solution multiplicity.

Recurrent Relation Network – SOTA neural Sudoku solver

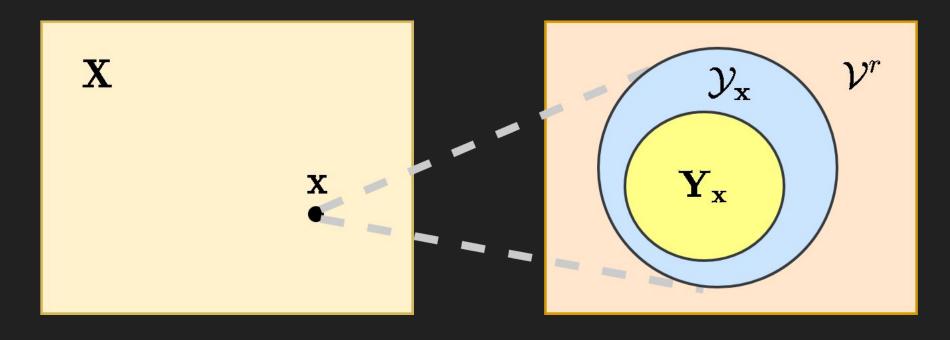
- Solves 96% unique solution puzzles
- But only 24% multiple solution puzzles

- Explicit modeling required to represent this solution multiplicity.
- Real world reasoning problems may have multiple solutions.

Problem formulation – One of Many Learning (10ML)

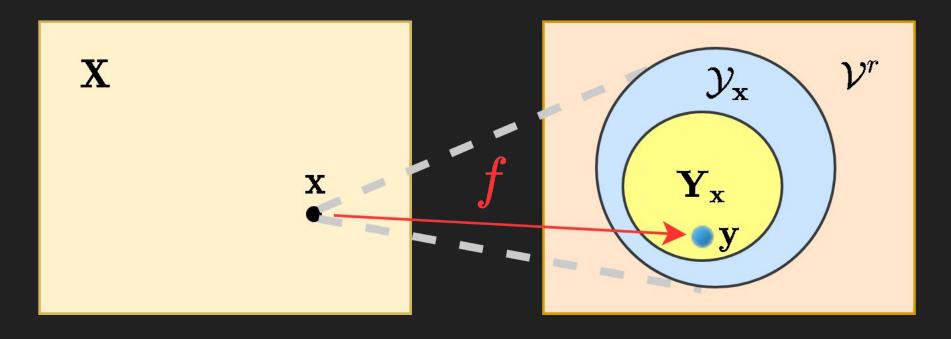
- Problem formulation One of Many Learning (10ML)
- Naïve Solutions: *NaïveLoss, CC-Loss*

- Problem formulation One of Many Learning (10ML)
- Naïve Solutions: NaïveLoss, CC-Loss
- Multiplicity Aware Loss Function: L_w


- Problem formulation One of Many Learning (10ML)
- Naïve Solutions: NaïveLoss, CC-Loss
- Multiplicity Aware Loss Function: L_w
- Optimization Techniques
 - Greedy *MinLoss*
 - Exploration Based: *IExpIR* and *SelectR*

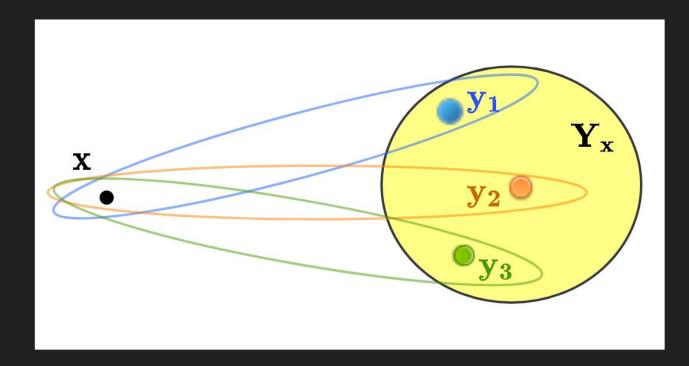
- Problem formulation One of Many Learning (10ML)
- Naïve Solutions: NaïveLoss, CC-Loss
- Multiplicity Aware Loss Function: L_w
- Optimization Techniques
 - Greedy *MinLoss*
 - Exploration Based: *IExpIR* and *SelectR*
- Experiments
 - o Three domains
 - Two reasoning models

One of Many Learning (10ML)


$$\mathbb{D} = \{(\mathbf{x}_i, \mathbf{Y}_{\mathbf{x}_i})\}_{i=1}^m$$

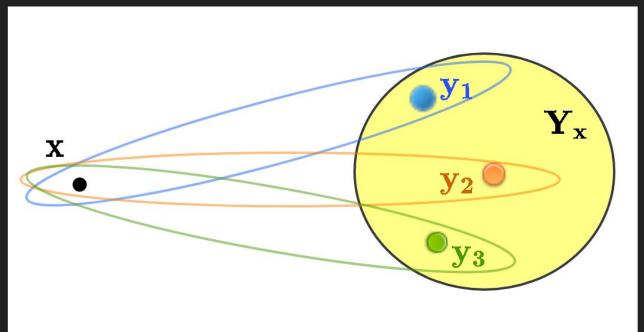
One of Many Learning (10ML)

$$\mathbb{D} = \{(\mathbf{x}_i, \mathbf{Y}_{\mathbf{x}_i})\}_{i=1}^m$$


One of Many Learning (10ML)

$$\mathbb{D} = \{(\mathbf{x}_i, \mathbf{Y}_{\mathbf{x}_i})\}_{i=1}^m$$

Naïve Loss


ullet Parameterize f as M_{ullet}

Naïve Loss

ullet Parameterize f as $M_{oldsymbol{\Theta}}$

$$L(\Theta) = \sum_{\mathbf{i}=1}^{m} \sum_{\mathbf{y_{ij}} \in \mathbf{Y_{x_i}}} l_{\Theta}(\hat{\mathbf{y}_i}, \mathbf{y_{ij}})$$

Penalizes the model even if prediction is correct!

Reformulating Loss

Reformulating Loss

$$L_{\mathbf{w}}(\Theta, \mathbf{w}) = \sum_{\mathbf{i}=1}^{m} \sum_{\mathbf{y_{ij}} \in \mathbf{Y_{x_i}}} w_{\mathbf{ij}} l_{\Theta}(\hat{\mathbf{y_i}}, \mathbf{y_{ij}})$$

s.t.
$$w_{ij} \in \{0, 1\} \ \forall i, \forall j \ and \ \sum_{j=1}^{|\mathbf{Y_{x_i}}|} w_{ij} = 1, \forall i = 1 \dots m$$

Greedy Optimization: MinLoss

Greedily chooses w for each example based on current O

Greedy Optimization: MinLoss

Greedily chooses w for each example based on current O

$$w_{ij} = 1 \left\{ \mathbf{y_{ij}} = \underset{\mathbf{y} \in \mathbf{Y_{x_i}}}{arg\min} \ l_{\Theta} \left(\hat{\mathbf{y_i}}, \mathbf{y} \right) \right\}, \forall \mathbf{i} = 1 \dots m$$

Greedy Optimization: MinLoss

Greedily chooses w for each example based on current O

$$w_{ij} = 1 \left\{ \mathbf{y_{ij}} = \underset{\mathbf{y} \in \mathbf{Y_{x_i}}}{arg\min} \ l_{\Theta} \left(\hat{\mathbf{y_i}}, \mathbf{y} \right) \right\}, \forall \mathbf{i} = 1 \dots m$$

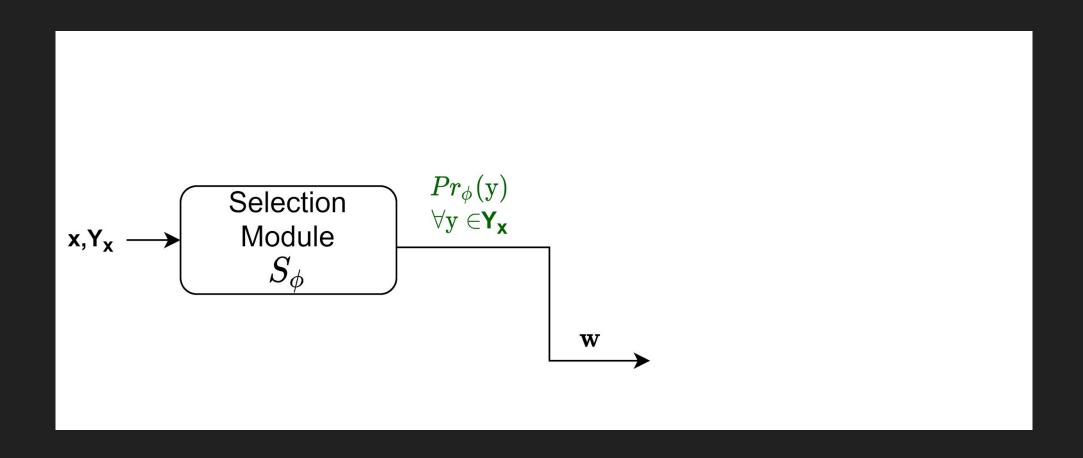
Locally optimal choices might not be globally optimal.

Exploration based Optimization

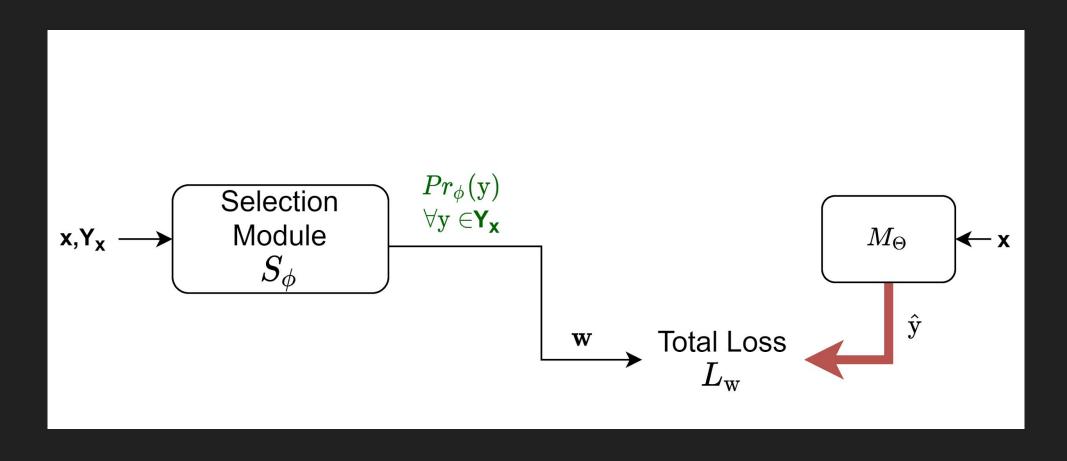
Select non-greedy targets with non-zero probability

IExpIR:

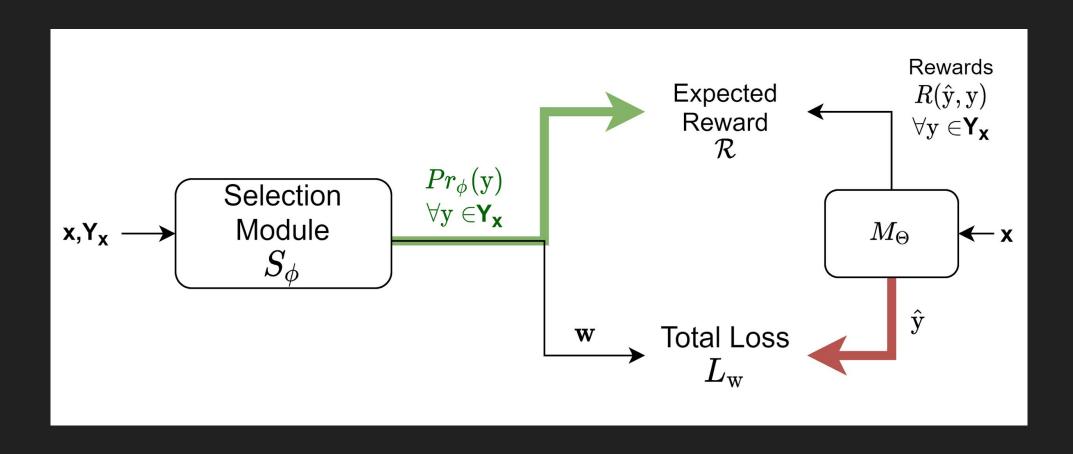
SelectR:


Exploration based Optimization

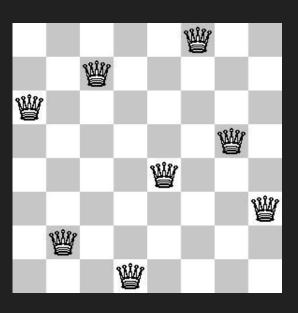
Select non-greedy targets with non-zero probability


IEXPIR: Use $Pr(\mathbf{y_{ij}}|\mathbf{x};\Theta)$ as exploration probability

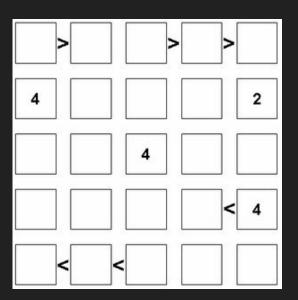
SelectR: Use an RL agent to get exploration probability


Exploration based Optimization: SelectR

Exploration based Optimization: SelectR



Exploration based Optimization: SelectR


Tasks

NQueens

Tasks

- NQueens
- Futoshiki

Tasks

- NQueens
- Futoshiki
- Sudoku

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			3 1 6
7				2				6
	6					2	8	
			4	1	9			5 9
				1 8			7	9

Tasks

NQueens

NLM

- Futoshiki
- Sudoku

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			3 1 6
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

Tasks

NQueensNLM

Futoshiki

Sudoku
 RRN

5	3			7				
5 6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

	Naïve	Unique	Random	CC-Loss	MinLoss	IExpIR	SelectR
NQueens							
Futoshiki							
Sudoku							

		Naïve	Unique	Random	CC-Loss	MinLoss	IExpIR	SelectR
NQueens								
	Overall	68.04	73.72	70.94				
	Ι							
Futoshiki								
	Overall	52.96	55.53	52.70				
	Τ							1
Sudoku								
	Overall	48.49	77.79	50.59				

		Naïve	Unique	Random	CC-Loss	MinLoss	IExpIR	SelectR
NQueens								
	Overall	68.04	73.72	70.94	75.39	77.28	77.70	79.72
	<u> </u>							
 Futoshiki								
	Overall	52.96	55.53	52.70	75.59	75.18	76.33	76.40
Sudoku								
	Overall	48.49	77.79	50.59	82.42	82.59	84.46	85.21

		Naïve	Unique	Random	CC-Loss	MinLoss	IExpIR	SelectR
	00	70.50	75.00	70.04	75.04	77.00	77.05	70.72
	OS	70.59	75.09	72.91	75.31	77.29	77.35	79.73
NQueens	MS	55.34	66.85	61.13	75.76	77.22	79.46	79.68
	Overall	68.04	73.72	70.94	75.39	77.28	77.70	79.72
	os							
Futoshiki	MS							
	Overall	52.96	55.53	52.70	75.59	75.18	76.33	76.40
Sudoku	OS							
	MS							
	Overall	48.49	77.79	50.59	82.42	82.59	84.46	85.21

		Naïve	Unique	Random	CC-Loss	MinLoss	IExpIR	SelectR
	OS	70.59	75.09	72.91	75.31	77.29	77.35	79.73
NQueens	MS	55.34	66.85	61.13	75.76	77.22	79.46	79.68
	Overall	68.04	73.72	70.94	75.39	77.28	77.70	79.72
	OS	65.59	67.63	65.49	77.68	76.78	78.15	78.01
Futoshiki	MS	14.99	19.13	14.22	69.30	70.35	70.88	71.57
	Overall	52.96	55.53	52.70	75.59	75.18	76.33	76.40
	os	87.85	89.19	87.53	88.26	88.25	88.73	88.69
Sudoku	MS	9.13	66.39	13.65	76.58	76.93	80.19	81.73
	Overall	48.49	77.79	50.59	82.42	82.59	84.46	85.21

Questions?

Poster Session 11

6th May 2021

9:00 am to 11:00 am PDT

Resources:

https://sites.google.com/view/yatinnandwani/1oml

