Improving Relational Regularized Autoencoders with Spherical Sliced Fused Gromov Wasserstein

Khai Nguyen¹, Son Nguyen¹, Nhat Ho², Tung Pham¹, Hung Bui¹

¹VinAI Research, Vietnam

²University of Texas, Austin

Deterministic Relational Regularized Autoencoders

Relational regularized autoencoders (RAEs) is a special case of WAEs to overcome the under-regularization problem by using **fused Gromov Wasserstein** as the regularization to combine both direct comparison and relational comparison.

$$\min_{ heta,\phi,\gamma} \mathbb{E}_{p_x} \mathbb{E}_{q_\phi(z|x)}[d(x,G_ heta(z))] + \lambda D_{fgw}(q_\phi(z),p_\gamma(z))$$

Deterministic relational regularized autoencoder (DRAE) is a variant of RAEs that achieves the state-of-the-art generative quality and has a fast computational time.

Replace FGW by sliced fused Gromov Wasserstein (SFG):

$$SFG(\mu,
u;eta) := \mathbb{E}_{ heta \sim \mathcal{U}(\mathbb{S}^{q-1})}[D_{fgw}(heta\sharp\mu, heta\sharp
u;eta)]$$

- $m{\mu},
 u\in\mathcal{P}(\mathbb{R}^q)$ and $\mathcal{U}(\mathbb{S}^{q-1})$ is the uniform distribution on the hypersphere of $m{q}$ dimension
- The expectation is approximated by Monte Carlo scheme with $\,L$ samples (projections)
- When μ , ν are empirical distributions, $D_{fgw}(\theta \sharp \mu, \theta \sharp \nu; \beta)$ can be computed efficiently by sorting the projected supports.

Spherical Sliced Fused Gromov Wasserstein

We introduce **spherical sliced fused Gromov Wasserstein** (SSFG), a new discrepancy for the relational regularization.

$$SSFG(\mu,
u; eta, \kappa) := \max_{\epsilon \in \mathbb{S}^{q-1}} \, \mathbb{E}_{ heta \sim \mathrm{vMF}(.|\epsilon, \kappa)} [D_{fgw}(heta\sharp \mu, heta\sharp
u; eta)]$$

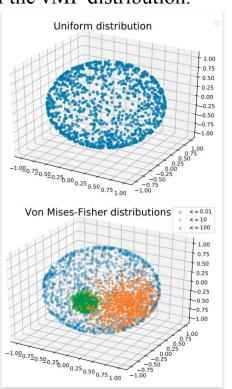
• vMF($\cdot | \epsilon, \kappa$) is the von-Mises Fisher distribution with the location parameter ϵ and the concentration parameter κ

SSFG finds the **best** von-Mises Fisher distribution that can **maximize** the expected 1-d FGW

- The optimization can be solved by stochastic gradient ascent with the **reparameterization trick** and **sampling procedure** of the vMF the distribution.
- SSFG is a pseudo distance between two distributions since it satisfies non-negativity, symmetry, and the weak triangle inequality.

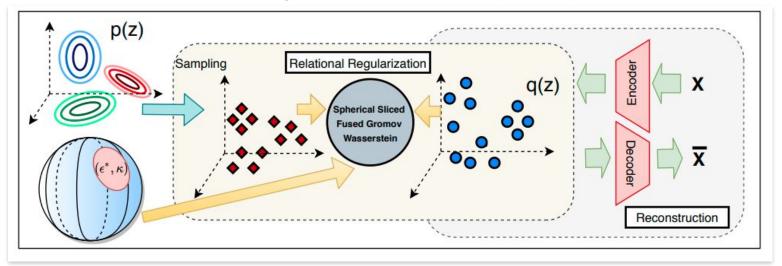
Spherical Sliced Fused Gromov Wasserstein

- SSFG is the **generalization** of SFG due to the interpolation property of the vMF distribution.
 - $lacksquare \lim_{\kappa o 0} SSFG(\mu,
 u; eta, \kappa) = SFG(\mu,
 u; eta)$
 - $ullet \lim_{\kappa o\infty} SSFG(\mu,
 u;eta,\kappa) = ext{max-}SFG(\mu,
 u;eta) \ = ext{max-}SFG(\mu,
 u;eta) := ext{max}_{ heta\in\mathbb{S}^{d-1}} D_{faw}(heta\sharp\mu, heta\sharp
 u;eta) \ .$
 - SSFG is a **interpolation** between SFG and max-SFG
- We also have following inequality for any $\kappa > 0$
 - $\bullet \ \exp(-\kappa)C_q(\kappa) \mathrm{SFG}(\mu,\nu;\beta) \leq \mathrm{SSFG}(\mu,\nu;\beta,\kappa) \leq \exp(\kappa)C_q(\kappa) \mathrm{SFG}(\mu,\nu;\beta)$
 - SSFG $(\mu, \nu; \beta, \kappa) \leq \text{max-SFG}(\mu, \nu; \beta)$
- SSFG does not suffer from **the curse of dimensionality** for the inference purposes



Spherical Deterministic Relational Regularized Autoencoder

By using SSFG for the regularization in WAEs, we obtain a new relational regularized autoencoder: spherical deterministic relational regularized autoencoder (s-DRAE)



s-DRAE is the **generalization** of DRAE and m-DRAE (uses max-SFG)

Power Spherical Sliced Fused Gromov Wasserstein

We introduce **power spherical sliced fused Gromov Wasserstein** (PSSFG), a new discrepancy that has the same property as SSFG but has faster computational time.

$$PSSFG(\mu,
u; eta, \kappa) := \max_{\epsilon \in \mathbb{S}^{q-1}} \, \mathbb{E}_{ heta \sim \mathrm{PS}(.|\epsilon, \kappa)}[D_{fgw}(heta\sharp \mu, heta\sharp
u; eta)]$$

- $lackbox{ PS}(.\,|\epsilon,\kappa)$ is the power spherical distribution with the location parameter ϵ and the concentration parameter κ
 - PSSFG is faster than SSFG since the power spherical does not need rejection sampling algorithm to sample from like the vMF distribution (also lead to more stable sampling).
 - PSSFG inherits all properties of SSFG such as metricity, interpolation, no curse of dimensionality
 - Using PSSFG in WAEs creates power spherical deterministic relational regularized autoencoder (ps-DRAE)

Mixture variants of SSFG and PSSFG

Using the **mixture** of von-Mises Fisher (power spherical) distribution can lead to following variants

Mixture spherical sliced fused Gromov Wasserstein (MSSFG)

$$MSSFG(\mu,\nu;\beta,\{\kappa\}_{i=1}^k,\{\alpha\}_{i=1}^k) := \ \max\nolimits_{\{\epsilon\}_{i=1}^k \in \mathbb{S}^{q-1}} \ \mathbb{E}_{\theta \sim \text{MovMF}(.|\{\epsilon\}_{i=1}^k,\{\kappa\}_{i=1}^k,\{\alpha\}_{i=1}^k)} [D_{fgw}(\theta \sharp \mu,\theta \sharp \nu;\beta)]$$

- lacksquare MovMF $(. | \{\epsilon\}_{i=1}^k, \{\kappa\}_{i=1}^k, \{lpha\}_{i=1}^k) := \sum_{i=1}^k lpha_i$ vMF $(. | \epsilon_i, \kappa_i)$
- **Mixture power spherical sliced fused Gromov Wasserstein (MPSSFG)**

$$MPSSFG(\mu,\nu;\beta,\{\kappa\}_{i=1}^k,\{\alpha\}_{i=1}^k) := \ \max\nolimits_{\{\epsilon\}_{i=1}^k \in \mathbb{S}^{q-1}} \ \mathbb{E}_{\theta \sim \mathsf{MoPS}(.|\{\epsilon\}_{i=1}^k,\{\kappa\}_{i=1}^k,\{\alpha\}_{i=1}^k)} [D_{fgw}(\theta \sharp \mu,\theta \sharp \nu;\beta)]$$

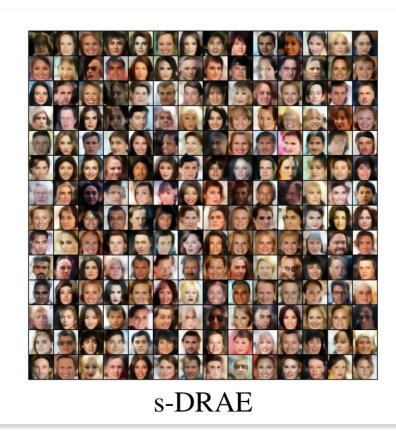
- lacksquare MoPS $(.\mid\{\epsilon\}_{i=1}^k,\{\kappa\}_{i=1}^k,\{lpha\}_{i=1}^k):=\sum_{i=1}^klpha_i$ PS $(.\mid\epsilon_i,\kappa_i)$
- The RAEs versions of MSSFG and MPSSFG are **mixture spherical DRAE** (ms-DRAE) and and **mixture power spherical DRAE** (mps-DRAE) respectively

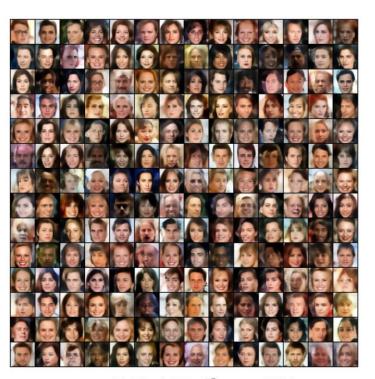
Experiments: Image generation and reconstruction

Table: Comparison between autoencoders

Method	MNIST		CelebA	
	FID	Reconstruction	FID	Reconstruction
VAE	71.55 ± 26.65	18.59 ± 2.22	59.99(*)	96.36(*)
GMVAE	75.68 ± 11.95	18.19 ± 0.14	212.59 ± 18.15	97.77 ± 0.19
Vampprior	138.03 ± 34.09	29.98 ± 4.09	-	-
PRAE	100.25 ± 41.72	16.20 ± 3.14	52.20 (*)	63.21(*)
WAE	80.77 ± 11	11.53 ± 0.33	52.07 (*)	63.83(*)
SWAE	80.28 ± 19.22	14.12 ± 2.06	86.53 ± 2.49	89.71 ± 2.15
DRAE	58.04 ± 20.74	14.07 ± 4.31	50.09 ± 1.33	66.05 ± 2.56
m-DRAE (ours)	52.92 ± 13.81	13.13 ± 0.33	49.05 ± 0.93	66.30 ± 0.22
s-DRAE (ours)	47.97 ± 13.83	11.17 ± 1.73	46.63 ± 0.83	66.62 ± 0.51
ps-DRAE (ours)	49.15 ± 12.93	11.71 ± 1.21	48.21 ± 1.02	66.31 ± 0.43
mps-DRAE (ours)	44.67 ± 9.98	11.01 ± 1.32	46.61 ± 1.01	66.23 ± 0.56
ms-DRAE (ours)	$\textbf{43.57} \pm \textbf{10.98}$	11.12 ± 0.91	46.01 \pm 0.91	65.91 ± 0.4

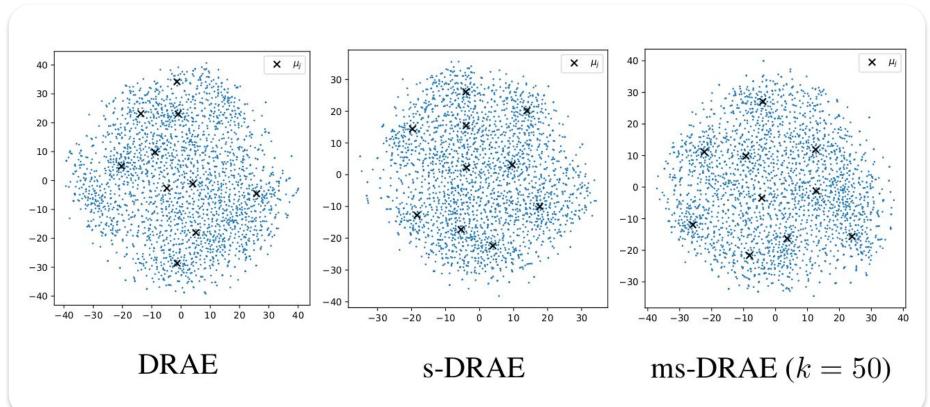
Experiments: Generated images





ms-DRAE (k = 50)

Experiments: Latent space visualization



Summary

• Introducing a new family of sliced fused Gromov Wasserstein discrepancies

Theoretical analysis (metricity, interpolation, curse of dimensionality)

• Introduce corresponding improved variants of RAEs

• Experimental results to show the favorable performance of new autoencoders

Email: v.khainb@vinai.io