SaliencyMix: A Saliency Guided Data Augmentation Strategy for Better Regularization

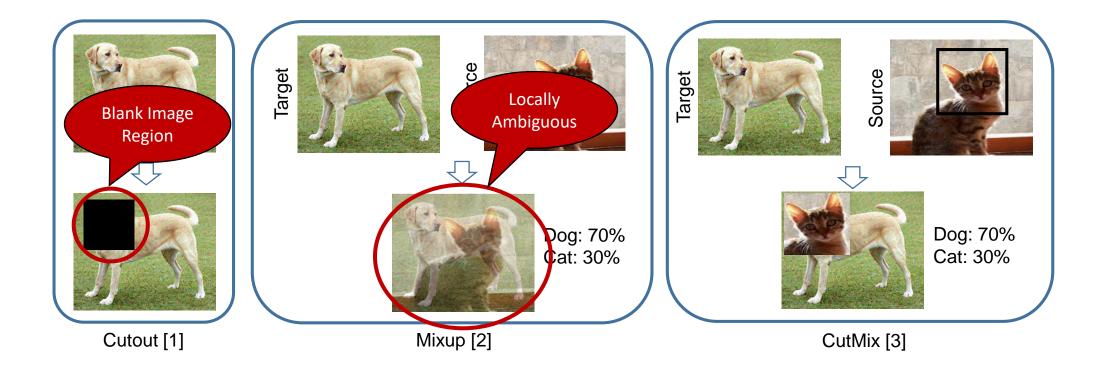
A F M Shahab Uddin, Mst Sirazam Monira, Wheemyung Shin, TaeChoong Chung and Sung-Ho Bae

Department of Computer Science and Engineering Kyung Hee University, South Korea.

ICLR 2021

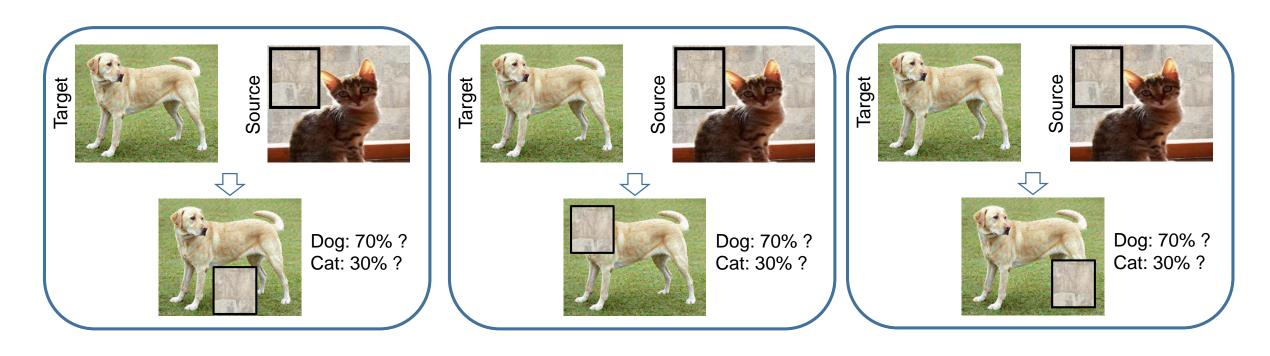
Advanced Data Augmentation Techniques

- Better regularization technique helps to improve model robustness and performance
- Recently, several effective data augmentation strategies have been proposed



Motivation

- Limitation of CutMix [3]
 - Random selection of the source patch may not always represent the source object



Guides the model to learn

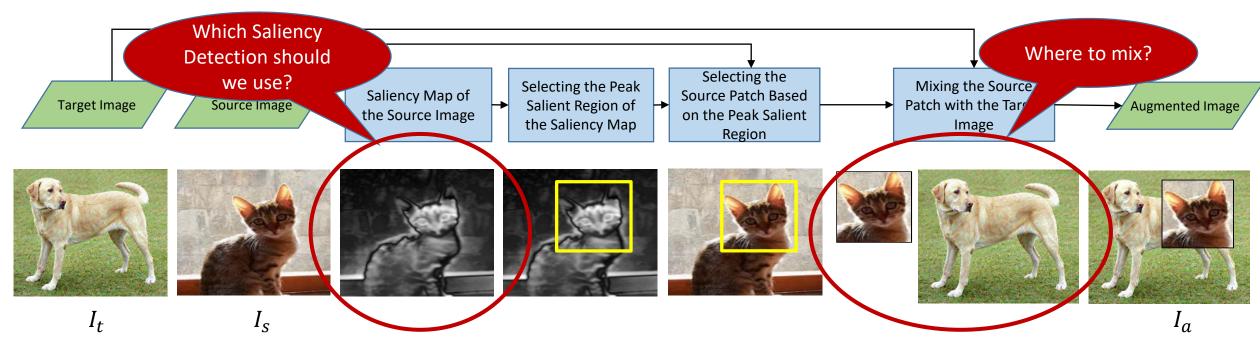
as Cat feature !!!

May mislead the classifier?

Proposed Method

Our Approach: SaliencyMix

- Proposed approach
 - 1. Extract the Saliency map [4] of the source image
 - 2. Select and cut the most salient region of the source image
 - 3. Then mix the source patch with the target image based on a mixing ration λ



Augmented Image $I_a = M \odot I_s + M' \odot I_t$

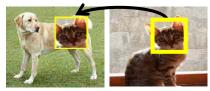
Augmented Label $y_a = \lambda y_t + (1 - \lambda)y_s$

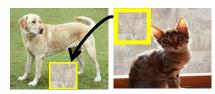
Classification Error (%)

Our Approach: SaliencyMix

ICLR

- Effect of various Saliency Detection methods
- Several strategy of **source patch** selection and mixing





CIFAR10 CIFAR10 Tiny ImageNet Tiny ImageNet 5.0 [9] 5 4 [5] \geq [9] 4 4.5 4.5 45 40 4.0 40 4.0I I 35 1 3.5 Ŧ 3.5 35 30 Non-Sal to Non-Sal Soto - Montabone & Soto 3.0 Non-Sal to Non-Sal Frequency Tuned Spectral Residual Frequency Tuned 3.0 30 **Spectral Residual Center to Center** Center to Center 25 2.5 25 2.5 Non-Sal to Sal ø Sal to Non-Sal Non-Sal to Sal 20 Sal to Non-Sal 2.0 20 2.0 Montabone Sal to Corr Sal to Corr Sal to Sal Baseline 15 Sal to Sal - Baseline 1.5 1.5 15 BASNet BASNet 10 1.0 10 1.0 0.5 5 0.5 5 0.0 0.0 37.63 45.05 38.56 36.03 38.27 36.05 43.37 44.12 44.53 3.0 37.10 36.79 4.20 4.45 4.72 3.94 3.87 <u> 3</u>.65 A.23 4.18 A.34 N.43 Source and Target Patch Mixing Style Saliency Detection Method Source and Target Patch Mixing Style Saliency Detection Method (c) (d)

Introduction

Proposed Method

Experimental Result

Conclusion

Experimental Result

Image Classification

CIFAR dataset

Manuan	TOP-1 ERROR (%)					
Method	CIFAR-10	CIFAR-10+	CIFAR-100	CIFAR-100+		
RESNET-18 (BASELINE)	10.63 ± 0.26	4.72 ± 0.21	36.68 ± 0.57	22.46 ± 0.31		
RESNET-18 + CUTOUT	9.31 ± 0.18	3.99 ± 0.13	34.98 ± 0.29	21.96 ± 0.24		
RESNET-18 + CUTMIX	9.44 ± 0.34	3.78 ± 0.12	34.42 ± 0.27	19.42 ± 0.23		
ResNet-18 + SaliencyMix	$7.59 {\pm} 0.22$	$3.65 {\pm} 0.10$	$28.73 {\pm} 0.13$	$19.29 {\pm} 0.21$		
RESNET-50 (BASELINE)	12.14 ± 0.95	4.98 ± 0.14	$36.48 {\pm} 0.50$	21.58 ± 0.43		
ResNet-50 + Cutout	$8.84 {\pm} 0.77$	$3.86 {\pm} 0.25$	32.97 ± 0.74	21.38 ± 0.69		
RESNET-50 + CUTMIX	9.16 ± 0.38	3.61 ± 0.13	31.65 ± 0.61	18.72 ± 0.23		
ResNet-50 + SaliencyMix	$6.81 {\pm} 0.30$	$3.46 {\pm} 0.08$	$24.89 {\pm} 0.39$	$18.57 {\pm} 0.29$		
WIDERESNET-28-10 (BASELINE)	6.97 ± 0.22	3.87 ± 0.08	26.06 ± 0.22	$18.80 {\pm} 0.08$		
WIDERESNET-28-10 + CUTOUT	$5.54 {\pm} 0.08$	3.08 ± 0.16	$23.94{\pm}0.15$	18.41 ± 0.27		
WIDERESNET-28-10 + AUTOAUGMENT	-	$2.60 {\pm} 0.10$	-	17.10 ± 0.30		
WIDERESNET-28-10 + PUZZLEMIX (200 EPOCHS)	-	-	-	16.23		
WIDERESNET-28-10 + CUTMIX	5.18 ± 0.20	2.87 ± 0.16	23.21 ± 0.20	16.66 ± 0.20		
WIDERESNET-28-10 + SALIENCYMIX	$4.04 {\pm} 0.13$	2.76 ± 0.07	$19.45{\pm}0.32$	16.56 ± 0.17		

ImageNet dataset

Метнор	TOP-1	TOP-5	
METHOD	Error (%)	Error (%)	
RESNET-50 (BASELINE)	23.68	7.05	
ResNet-50 + Cutout	22.93	6.66	
ResNet-50 + StochasticDepth	22.46	6.27	
ResNet-50 + Mixup	22.58	6.40	
ResNet-50 + Manifold Mixup	22.50	6.21	
ResNet-50 + AutoAugment	22.40	6.20	
ResNet-50 + DropBlock	21.87	5.98	
ResNet-50 + CutMix	21.40	5.92	
RESNET-50 + PUZZLEMIX	21.24	5.71	
ResNet-50 + SaliencyMix	21.26	5.76	
ResNet-101 (BASELINE)	21.87	6.29	
ResNet-101 + Cutout	20.72	5.51	
ResNet-101 + Mixup	20.52	5.28	
ResNet-101 + Cutmix	20.17	5.24	
ResNet-101 + SaliencyMix	20.09	5.15	

Transfer Learning on Object Detection Task

BAC	KBONE NETWORK	IMAGENET Cls. Err. Top-1 (%)	DETECTION (F-RCNN) (MAP)
RES	NET-50 (BASELINE)	23.68	76.71 (+0.00)
CUT	OUT-TRAINED	22.93	77.17 (+0.46)
MIX	UP-TRAINED	22.58	77.98 (+1.27)
CUT	MIX-TRAINED	21.40	78.31 (+1.60)
SAL	IENCYMIX-TRAINED	21.26	78.48 (+1.77)

SaliencyMix trained model offers **1.77** % performance **improvement**

Adversarial Robustness

	BASELINE	CUTOUT	MIXUP	CUTMIX	SALIENCYMIX
ACC. (%)	8.2	11.5	24.4	31.0	32.96

SaliencyMix trained model shows **better robustness**

Computational Complexity

	BASELINE	CUTOUT	MIXUP	CUTMIX	SALIENCYMIX
TIME (HOUR)	0.83	0.84	0.87	0.89	0.91

c Computational burden slightly **increased** due to saliency detection

Conclusion

- SaliencyMix is an effective data augmentation technique
 - Offers the CNN with greater regularization ability
 - o Improves the model performance
 - Classification
 - WideResNet: Best known top-1 error of 2:76% and 16:56% on CIFAR-10 and CIFAR-100, respectively
 - F ResNet-50: Best known top-1 error of 21.26% on ImageNet
 - F ResNet-101: Best known top-1 error of **20.09%** on ImageNet
 - Object Detection
 - SaliencyMix trained model improves detection performance by +1.77 mAP
 - Robustness against adversarial attack
 - SaliencyMix trained model achieves 1:96% accuracy improvement on adversarially perturbed ImageNet validation set

References

- [1] T. DeVries and G. W. Taylor. Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.
- [2] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.
- [3] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. ICCV, 2019.
- [4] S. Montabone and A. Soto, "Human detection using a mobile platform and novel features derived from a visual saliency mechanism," Image and Vision Computing, vol. 28, no. 3, pp. 391-402, 2010.
- [5] X. Hou and L. Zhang, "Saliency detection: A spectral residual approach," in 2007 IEEE Conference on Computer Vision and Pattern Recognition, June 2007, pp. 1-8.
- [6] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, "Frequency-tuned salient region detection," in 2009 IEEE Conference on Computer Vision and Pattern Recognition, June 2009, pp. 1597-1604.
- [7] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand, "Basnet: Boundary-aware salient object detection," in The IEEE Conference on Computer Vision and Pattern Recognition, June 2019.

Introduction

Motivation

Proposed Method

Experimental Result