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Data parallelism

da
ta

gradient

A parallel computing system

Processing training data in parallel

Accelerate training and model-agnostic

Degree of parallelism ≡ Batch size (single node)

Active research for the e�ect of batch size (Dean
et al. 2012; Goyal et al. 2017; Ho�er et al. 2017;
Shallue et al. 2019; Lin et al. 2020)
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Sparsity

Pruning

Dense neural network Sparse neural network

Introducing sparsity by pruning

Sparse neural networks

Save computations and memory

Pruning at initialization prior to training (Lee
et al. 2019; Wang et al. 2020)

Subsequent training remains unknown.
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Proposal

Data parallelism & Sparsity

• E�cient deep learning
• Complimentary benefits

What we do:

1. Measure their e�ects on training time
2. Develop theoretical analysis to explain the e�ects
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Setup

For a given workload

(a) Network (b) Data set (c) Algorithm

Train for batch sizes and sparsity levels

Measure steps-to-result (K?)

Metaparameter search
• Parameters set before training

(e.g. learning rate)
• To avoid any assumption on optimal

metaparameters
• Search space: preliminary results
• Budget: 100 training trials

Steps-to-result (K?) vs. Batch size (B)
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Measuring the e�ects
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General scaling trend across various workloads
• Linear scaling
• Diminishing returns
• Maximal data parallelism

Sparsity levels (0− 90%)

Di�culty of training under sparsity
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Understanding the e�ects

Based on convergence properties of stochastic gradient methods:

The relationship between steps-to-result (K?) and batch size (B)

K? ≈ c1
B

+ c2 , where c1 =
∆Lβ
µ2ε2

and c2 =
∆

η̄?µε
.

This result precisely illustrates the observed scaling trends.

1. Linear scaling, diminishing returns, maximal data parallelism
2. Lipschitz smoothness (L) is what can shift the curve vertically

6



Understanding the e�ects

Based on convergence properties of stochastic gradient methods:

The relationship between steps-to-result (K?) and batch size (B)

K? ≈ c1
B

+ c2 , where c1 =
∆Lβ
µ2ε2

and c2 =
∆

η̄?µε
.

This result precisely illustrates the observed scaling trends.

1. Linear scaling, diminishing returns, maximal data parallelism
2. Lipschitz smoothness (L) is what can shift the curve vertically

6



Lipschitz smoothness under sparsity

0 5 10 15 20 25 30 35 40
Steps (×103)

0

1

2

3

4

5

6

7

8
Lip

 c
hi
tz
 c
on

 t
an

t o
f ∇

f
Simple-CNN

Spar ity: 0%
Sparsity: 50%
Sparsity: 70%
Sparsity: 90%

Local L throughout training

Local Lipschitz smoothness (L)

The higher sparsity, the higher L

Gradient changes relatively too quickly

The di�culty of training sparse networks
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Summary

Main points:

1. General scaling trend for the e�ects of data parallelism and sparsity
2. Theoretical analysis to verify the e�ects
3. Lipschitz smoothness to explain the di�culty of training sparse networks

Code: https://github.com/namhoonlee/e�ect-dps-public

Contact: namhoon@robots.ox.ac.uk
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