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Summary: We show advantages of GNNs in expressive power and
learning compared to Graph-Augmented MLPs

I GNNs based on message passing:
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I Graph-Augmented MLPs: Simplifying GNNs by replacing
depth with multi-hop graph operators
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Graph-Augmented Multi-layer Perceptrons (GA-MLPs)

I Node features as input: X ∈ Rn×d

Node embeddings as output: Z ∈ Rn×d ′

I Ingredients:
1 A family of graph operators: Ω = {ω1(A), ..., ωK (A)}
2 ϕ : Rd → Rd̃ and ρ : RKd̃ → Rd′ being learnable node-wise

functions, e.g. MLPs

I Steps:

1 For each k , compute X̃k = ωk(A) · ϕ(X ) ∈ Rn×d̃

2 Concatenate X̃ = [X̃1, ..., X̃K ] ∈ Rn×(Kd̃)

3 Compute Z = ρ(X̃ ) ∈ Rn×d′

I Examples: SGC Wu et al. (2019), GFN Chen et al. (2019),
SIGN Rossi et al. (2020)
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Expressive power of GNNs

From the viewpoint of graph isomorphism tests -

Question: Can GNNs distinguish all pairs of non-isomorphic
graphs?

Answer Xu et al. (2019); Morris et al. (2019)

No, for GNNs based on message passing. For example,
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Expressive power of GA-MLPs

Question: Are GNNs more powerful than GA-MLPs in
distinguishing non-isomorphic graphs?

Answer:
For certain choices of the operator family, yes.

Proposition (1)

If Ω ⊆ {Ãk : k ∈ N}, with either Ã = A or Ã = D−αAD−(1−α) for
some α ∈ [0, 1], there exists a pair of graphs which can be
distinguished by GNNs but not this GA-MLP.
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Expressive power of GA-MLPs

Question: Are GNNs more powerful than GA-MLPs in
distinguishing non-isomorphic graphs?

Answer:
For certain popular choices of the operator family, yes.
However, the fraction of such examples is small.

Proposition (2)

For all n ∈ N+, ∃αn > 0 such that any GA-MLP that has
{D,AD−αn} ⊆ Ω can distinguish almost all pairs of
non-isomorphic graphs of at most n nodes, in the sense that the
fraction of graphs on which such a GA-MLP fails to test
isomorphism is 1− o(1) as n→∞.
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Towards a node-wise perspective on expressive power

Both GNNs and GA-MLPs can be viewed as functions on rooted
graphs (i.e., egonets or neighborhooods).

They partition rooted graphs into equivalence classes.
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More powerful models induce finer equivalence classes.
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GNNs induce finer equivalence classes of rooted graphs than GA-MLPs

Proposition (3)

Assume that |X | ≥ 2 and m ≥ 3. The total number of equivalence
classes of rooted graphs induced by GNNs of depth K grows at
least doubly-exponentially in K .

Proposition (4)

Fix Ω = {I , Ã, Ã2, ..., ÃK}, where Ã = D−αAD−β for some
α, β ∈ R. Then the total number of equivalence classes in E
induced by such GA-MLPs is poly-exponential in K .

Corollary

The VC dimension of all GNNs of K layers as functions on rooted
graphs grows at least doubly-exponentially in K ; Fixing α, β ∈ R,
the VC dimension of all GA-MLPs with Ω = {I , Ã, Ã2, ..., ÃK} as
functions on rooted graphs is at most poly-exponential in K .
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GNNs induce finer equivalence classes of rooted graphs than GA-MLPs

Proposition (5)

If Ω is any family of equivariant linear operators on the graph that
only depend on the graph topology of at most K hops, then there
exist exponentially-in-K many equivalence classes in E induced by
the GA-MLPs with Ω, each of which intersects with
doubly-exponentially-in-K many equivalence classes in E induced
by depth-K GNNs, assuming that |X | ≥ 2 and m ≥ 3. Conversely,
in constrast, if Ω = {I , Ã, Ã2, ..., ÃK}, in which Ã = D−αAD−β

with any α, β ∈ R, then each equivalence class in E induced by
depth-(K + 1) GNNs is contained in one equivalence class induced
by the GA-MLPs with Ω.
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GA-MLPs cannot count attributed walks

Proposition (6)

For any sequence of node features {xk}k∈N+ ⊆ X , consider the
sequence of functions fk(G [i ]) := |Wk(G [i ]; (x1, ..., xk))| on E . For
all k ∈ N+, the image under fk of every equivalence class in E
induced by depth-k GNNs contains a single value, while for any
GA-MLP using equivariant linear operators that only depend on
the graph topology, there exist exponentially-in-k many
equivalence classes in E induced by this GA-MLP whose image
under fk contains exponentially-in-k many values.
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GA-MLPs cannot count attributed walks

Cora RRG

Model Train Test Train Test

GIN 3.98E-6 9.72E-7 3.39E-5 2.61E-4
GA-MLP-A 1.23E-1 1.56E-1 1.75E-2 2.13E-2
GA-MLP-A+ 1.87E-2 6.44E-2 1.69E-2 2.13E-2

GA-MLP-Ã(1) 4.22E-1 5.79E-1 1.02E-1 1.58E-1

GA-MLP-Ã(1)+ 4.00E-1 5.79E-1 1.12E-1 1.52E-1

Table 1: MSE loss divided by label variance for counting attributed walks
on the Cora graph and RRG. The models denoted as “+” contain twice
as many powers of the operator.
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Another advantage of GNNs over GA-MLPs: learning the operators

1 2 3 4 5
Rank of hardness

0.0

0.2

0.4

0.6

0.8

O
ve

rla
p

0.18

0.24

0.40

0.78

0.94

0.16

0.22

0.36

0.71

0.94

0.17

0.25

0.42

0.76

0.94sGNN
GA-MLP-A
GA-MLP-H

Figure 1: Community detection on binary SBM with 5 choices of in- and
out-group connectivities, each yielding to a different SNR. Higher overlap
means better performance.
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