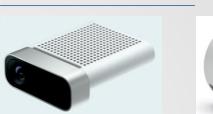
PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences

Hehe Fan¹, Xin Yu², Yuhang Ding³, Yi Yang² and Mohan Kankanhalli¹

¹School of Computing, National University of Singapore

²ReLER, University of Technology Sydney

³Baidu Research



LiDAR is Becoming a Real Business

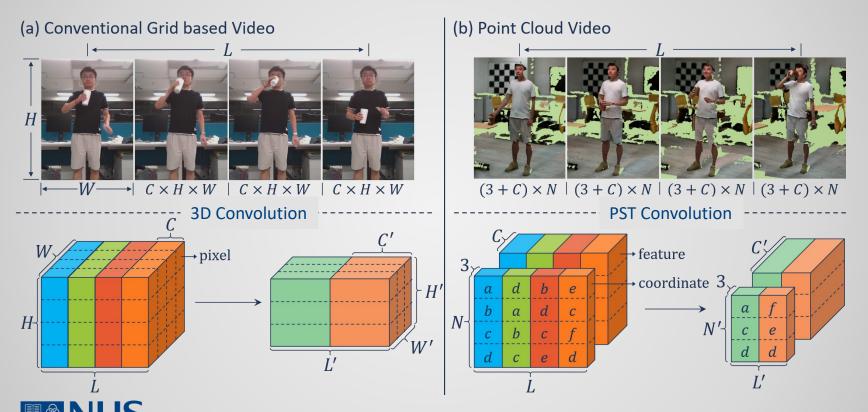
Self-driving car

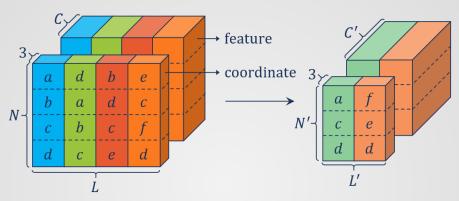
Azure Kinect Microsoft

RealSense L515 Intel

iPad/iPhone Pro Apple

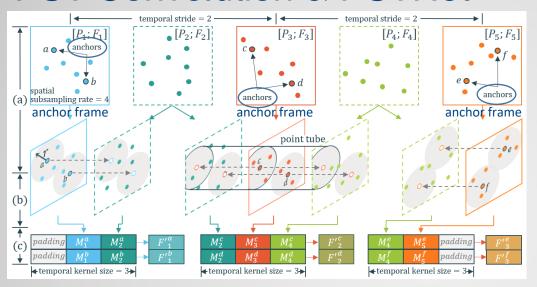
3D Point Cloud Sequence/Video





Conventional Grid-based Video vs. Point Cloud Video

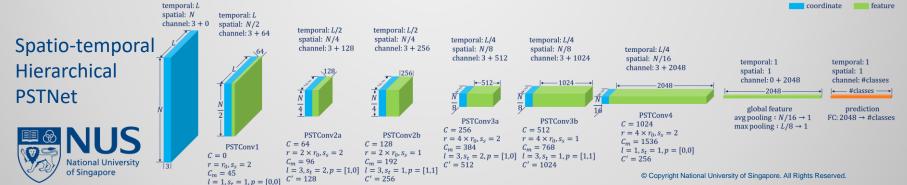
of Singapore


Challenges in Point Cloud Video Modeling

- Points emerge inconsistently across different frames.
 - Tracking points (*).
 - Spatio-temporal hierarchy (✓).
- Point cloud videos are spatially unordered and irregular but temporally ordered and regular.
 - Decompose the spatio-temporal modeling in point cloud videos.

PST Convolution & PSTNet

C' = 64


PST Convolution:

- a) Point tube construction
- b) Spatial Convolution

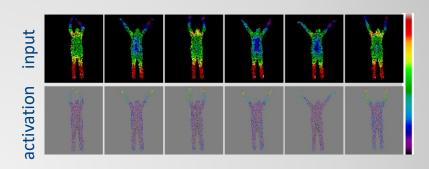
$$M_t^{(x,y,z)} = \sum_{\|(\delta_x,\delta_y,\delta_z)\| \le r} \mathbf{S}^{(\delta_x,\delta_y,\delta_z)} \cdot F_t^{(x+\delta_x,y+\delta_y,z+\delta_z)}$$

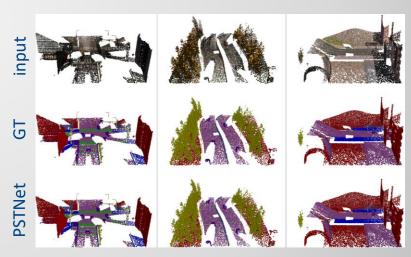
c) Temporal Convolution

$$F_t^{(x,y,z)} = \sum_{k=-\lfloor l/2 \rfloor}^{\lfloor l/2 \rfloor} \mathbf{T}_k \cdot M_{t+k}^{(x,y,z)}$$

Experiments

3D Action Recognition


Table 2: Action recognition accuracy (%) on the NTU RGB+D 60 and NTU RGB+D 120 datasets.


Method	Y4	NTU RGB+D 60		NTU RGB+D 120	
	Input	Subject	View	Subject	Setup
SkeleMotion (Caetano et al., 2019)	skeleton	69.6	80.1	67.7	66.9
GCA-LSTM (Liu et al., 2017)	skeleton	74.4	82.8	58.3	59.3
FSNet (Liu et al., 2019b)	skeleton	-	-	59.9	62.4
Two Stream Attention LSTM (Liu et al., 2018)	skeleton	77.1	85.1	61.2	63.3
Body Pose Evolution Map (Liu & Yuan, 2018)	skeleton	-	-	64.6	66.9
AGC-LSTM (Si et al., 2019)	skeleton	89.2	95.0	-	-
AS-GCN (Li et al., 2019)	skeleton	86.8	94.2	-	-
VA-fusion (Zhang et al., 2019)	skeleton	89.4	95.0	-	-
2s-AGCN (Shi et al., 2019b)	skeleton	88.5	95.1	-	-
DGNN (Shi et al., 2019a)	skeleton	89.9	96.1	-	-
HON4D (Oreifej & Liu, 2013)	depth	30.6	7.3	-	-
SNV (Yang & Tian, 2014)	depth	31.8	13.6	-	-
HOG ² (Ohn-Bar & Trivedi, 2013)	depth	32.2	22.3	-	-
Li et al. (2018a)	depth	68.1	83.4	-	-
Wang et al. (2018a)	depth	87.1	84.2	-	-
MVDI (Xiao et al., 2019)	depth	84.6	87.3	-	-
NTU RGB+D 120 Baseline (Liu et al., 2019a)	depth	-	-	48.7	40.1
PointNet++ (appearance) (Qi et al., 2017b)	point	80.1	85.1	72.1	79.4
3DV (motion) (Wang et al., 2020)	voxel	84.5	95.4	76.9	92.5
3DV-PointNet++ (Wang et al., 2020)	voxel + point	88.8	96.3	82.4	93.5
PSTNet (ours)	point	90.5	96.5	87.0	93.8

4D Semantic Segmentation

Table 3: Semantic segmentation results on the Synthia 4D dataset.

Method	Input	#Frms	#Params (M)	mIoU (%)
3D MinkNet14 (Choy et al., 2019) 4D MinkNet14 (Choy et al., 2019)			19.31 23.72	76.24 77.46
PointNet++ (Qi et al., 2017b) MeteorNet (Liu et al., 2019e)	point point	1 3	0.88 1.78	79.35 81.80
$\begin{array}{l} {\rm PSTNet} \ (l=1) \\ {\rm PSTNet} \ (l=3) \end{array}$	point point	3 3	1.42 1.67	80.79 82.24

© Copyright National University of Singapore. All Rights Reserved.