When Does Preconditioning Help or Hurt Generalization?

Shun-ichi Amari¹, Jimmy Ba², Roger Grosse², Xuechen Li³, Atsushi Nitanda⁴, Taiji Suzuki⁴, Denny Wu², Ji Xu⁵

International Conference on Learning Representations 2021

¹RIKEN CBS

²University of Toronto and Vector Institute

³Google Research, Brain Team

⁴University of Tokyo and RIKEN AIP

⁵Columbia University

Preconditioned Gradient Descent

Update rule:
$$\theta_{t+1} = \theta_t - \eta P(t) \nabla_{\theta_t} L(f_{\theta_t}), \quad t = 0, 1, \dots$$

Common choices of preconditioner **P** and corresponding algorithm:

- Inverse Fisher information matrix ⇒ natural gradient descent (NGD).
- Certain diagonal matrix ⇒ adaptive gradient methods (e.g. Adagrad, Adam).

<u>Geometric Intuition:</u> alleviate the effect of pathological curvature (using 2nd order information) and speed up **optimization**.

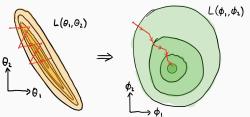


Figure from Xanadu blog post.

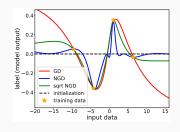
Question: how does preconditioning affect generalization?

Motivation: Implicit Bias of Optimizers

In the *online learning* setup, efficient optimization \approx good generalization. **This work:** learning a *fixed* dataset, possibly achieving zero training loss.

Implicit Bias in Interpolants

- Modern machine learning models (e.g. neural nets) are often overparameterized.
- Overparameterized models may interpolate training data in different ways.
- P affects the properties of the interpolant.



Motivation of This Work:

• In the *interpolation setting* (i.e. absence of explicit regularization), how does preconditioning influence the generalization performance?

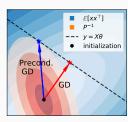
Implicit Bias in Overparameterized Linear Regression

Motivating Example: preconditioned gradient descent (PGD) on the overparameterized least squares objective: $L(\theta) = \frac{1}{n} || \mathbf{y} - \mathbf{X} \theta ||_2^2$.

Stationary Solution ($t \to \infty$):

- Gradient descent: min ℓ_2 -norm solution.
- Preconditioned GD: for time-independent and full-rank P, min $\|\theta\|_{P^{-1}}$ norm solution.

Common Argument: min ℓ_2 -norm solution generalizes well \Rightarrow GD ($P = I_d$) is better (e.g. [Wilson et al. 2017]).



Question: Why is the ℓ_2 norm the right measure for generalization?

Motivation of This Work:

• In simplified settings, can we determine the *optimal preconditioner* that leads to the lowest generalization error?

Preconditioned Linear Regression: Problem Setup

- Data Model: $\mathbb{E}[\mathbf{x}\mathbf{x}^{\top}] = \Sigma_{\mathbf{x}}$; $\mathbf{X} \in \mathbb{R}^{n \times d}$, $n, d \to \infty$ and $d/n \to \gamma > 1$.
- Gradient Update: $d\theta(t) = \frac{1}{n} P(t) X^{\top} (y X \theta(t)) dt$, $\theta(0) = 0$.

Consider <u>natural gradient descent</u> (NGD) as an example. Given data distribution and model $p(X, y|\theta) = p(X)p(y|f_{\theta}(X))$,

$$\mathbf{F} = \mathbb{E}[\nabla_{\boldsymbol{\theta}} \log p(\mathbf{X}, y | \boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}} \log p(\mathbf{X}, y | \boldsymbol{\theta})^{\top}] = -\mathbb{E}[\nabla_{\boldsymbol{\theta}}^{2} \log p(\mathbf{X}, y | \boldsymbol{\theta})].$$

The NGD update direction is then given by $\mathbf{F}^{-1}\nabla_{\theta}L(\mathbf{X}, f_{\theta})$.

Remark: for squared loss, the Fisher reduces to $\mathbb{E}[J_f^{\top}J_f]$ [Martens 2014].

For least squares regression, many preconditioners are time-invariant:

- Sample Fisher (Hessian) \Leftrightarrow sample covariance X^TX/n .
- Population Fisher \Leftrightarrow population covariance Σ_x .

We thus limit our analysis to fixed preconditioners P(t) =: P.

Stationary Solution of Preconditioned Regression

For positive definite P, the gradient flow trajectory is described by

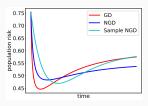
$$\theta_P(t) = PX^{\top} \Big[I_n - \exp\Big(-\frac{t}{n}XPX^{\top}\Big) \Big] (XPX^{\top})^{-1}y,$$

and the stationary solution $\hat{ heta}_P$ is the min $\| heta\|_{P^{-1}}$ norm interpolant:

$$\hat{\theta}_{\textit{P}} := \lim_{t \to \infty} \theta_{\textit{P}}(t) = \textit{PX}^\top (\textit{XPX}^\top)^{-1} \textit{y} = \arg \min_{\textit{X}\theta = \textit{y}} \lVert \theta \rVert_{\textit{P}^{-1}}.$$

Noticeable examples of preconditioned update:

- Identity: $P = I_d$ gives the min ℓ_2 norm interpolant (also true for momentum GD and SGD).
- Population Fisher: $P = F^{-1} = \Sigma_{x}^{-1}$.
- Sample Fisher: $P = (X^T X + \lambda I_d)^{-1}$ or $(X^T X)^{\dagger}$ results in the min ℓ_2 norm solution (same as GD).



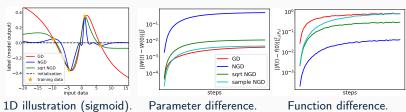
<u>Remark:</u> population Fisher can be estimated from extra **unlabeled data**.

Implicit Bias of Natural Gradient Descent

Starting from zero initialization:

- GD solution $\hat{\theta}_{I}$ has small parameter norm $\|\theta\|_{2}$.
- NGD solution $\hat{\theta}_{F^{-1}}$ has small function norm $\mathbb{E}_{p(x)}[f(x)^2] = \|\theta\|_{\Sigma_x}^2$.
- Sample Fisher-based updates behaves similar to GD.

Similar findings also empirically observed in two-layer neural networks:



Question: How does this difference translate to the generalization performance?

Bias-variance Decomposition

$$R(\theta) = \underbrace{\mathbb{E}_{P_X}[(f^*(\mathbf{x}) - \mathbf{x}^\top \mathbb{E}_{P_\varepsilon}[\theta])^2]}_{B(\theta), \text{ bias}} + \underbrace{\operatorname{tr}(\operatorname{Cov}(\theta)\boldsymbol{\Sigma}_{\scriptscriptstyle X})}_{V(\theta), \text{ variance}}.$$

- Bias depends on the teacher (target function) f_* and data distribution.
- Variance is due to the *label noise* (independent of the teacher model).

<u>Goal:</u> determine the optimal preconditioner *P* under different conditions of teacher model (bias) and label noise (variance).

Precise Asymptotic Risk in Bias-variance Decomposition:

Thm. (informal). Under certain conditions, as $n,d\to\infty$, $d/n\to\gamma\in(1,\infty)$,

- For positive definite P, $V(\hat{\theta}_P) \to \sigma^2 \Big(\lim_{\lambda \to 0_+} \frac{m'(-\lambda)}{m^2(-\lambda)} 1 \Big)$.
- For linear teacher θ_* , $B(\hat{\theta}_P) \to \lim_{\lambda \to 0_+} \frac{m'(-\lambda)}{m^2(-\lambda)} \mathbb{E}\left[\frac{v_{\chi}v_{\theta}}{(1+v_{\chi p}m(-\lambda))^2}\right]$.

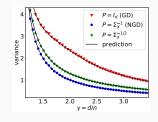
Where m(z) > 0 is the *Stieltjes transform* of the limiting spectral distribution of \mathbf{XPX}^{\top} , and $(\upsilon_x, \upsilon_{\theta}, \upsilon_{xp})$ relates to the eigenvalues of \mathbf{P} , Σ_x , and $\mathbb{E}[\theta_*\theta_*^{\top}]$.

Variance Term: NGD is Optimal

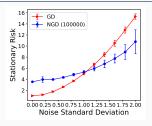
Thm. Among all positive definite P, the variance is minimized by NGD: $P = F^{-1}$.

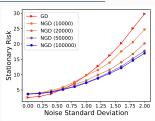
Message: when labels are noisy (risk is dominated by variance), NGD is beneficial.

Remark: Note that population Fisher is required.



Two-layer MLP: student-teacher setup (distillation)





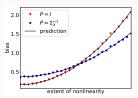
- Left: NGD (population Fisher) achieves lower risk under large label noise.
- Right: sample Fisher (i.e. less unlabeled data used) behaves like GD.

Misspecification \approx Label Noise

Misspecified Model: $f_*(x) = x^{\top} \theta_* + f_*^c(x)$; the residual f_x^c cannot be learned by the student model.

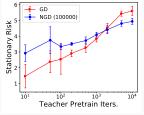
Intuition: f_*^c is "similar" to additive label noise.

Message: NGD is beneficial under misspecification.

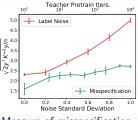


Misspecification in Neural Networks

- Student: two-layer MLP; Teacher: ResNet-20 at varying training epochs.
- Heuristic measure of misspecification: √y[⊤]K⁻¹y/n, where K is the neural tangent kernel (NTK) matrix of the student.



Misspecification on CIFAR-10.

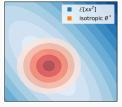


Measure of misspecification.

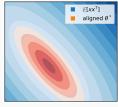
Bias Term: Well-specified Case

Well-specified Model: $f_*(x) = x^\top \theta_*$, with general prior $\mathbb{E}[\theta_* \theta_*^\top] = \Sigma_{\theta}$.

- Setup extends previously assumed isotropic prior [Dobriban and Wager 18].
- Alignment between Σ_x and Σ_θ relates to the source condition in RKHS.



Isotropic (previous work).



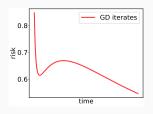
Aligned (easy problem).

Misaligned (hard problem).

"Surprises" under General Setup:

• Gradient descent may lead to prediction risk non-monotonic in time, even if $\sigma = 0$.

Remark: when Σ_x or Σ_θ is isotropic, the bias term is always *monotonically decreasing* through time.



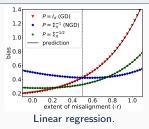
Well-specified Bias (continued)

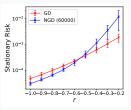
Theorem (informal). Among all positive definite P codiagonalizable with Σ_x , the stationary bias is minimized by $P = U \operatorname{diag}(U^\top \Sigma_\theta U) U^\top$.

No-free-lunch: the optimal **P** is usually not known a priori:

- ullet GD generalizes better when target is **isotropic** $\Sigma_{ heta} = \emph{I}_d$.
- NGD is optimal under **misalignment** $\Sigma_{\theta} = \Sigma_{x}^{-1}$ ("hard" problem).

Prop. (source condition). When $\underline{\Sigma}_{\theta} = \underline{\Sigma}_{x}^{r}$, there exists a transition point $r^{*} \in (-1,0)$ s.t. GD achieves lower (higher) bias than NGD iff $r > (<) r^{*}$.





Two-layer MLP (MNIST).

Misalignment in MLP: Construct the teacher parameters in the small eigen-directions of the student's Fisher. Large $|r| \Rightarrow$ more misaligned.

Bias-variance Tradeoff: Interpolating between P

The optimal **P** for the *bias* and *variance* are in general **different**.

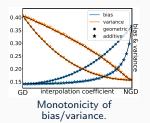
Question: how can we trade in one of bias/variance for the other?

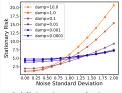
Example: Consider $\Sigma_{\theta} = I_d$, $\Sigma_x \neq I_d$, and the following interpolation schemes:

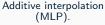
- Additive: $P_{\alpha} = (\alpha \Sigma_x + (1-\alpha)I_d)^{-1}$, corresponds to the *damped inverse*.
- Geometric: $P_{\alpha} = \Sigma_{x}^{-\alpha}$, covers the "conservative" square-root scaling.

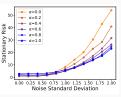
Proposition (informal). The stationary bias/variance is *monotonically* increasing/decreasing w.r.t. α in a certain range between 0 and 1.

⇒ At certain SNR, **interpolating** between GD and NGD is beneficial.









Geometric interpolation (MLP).

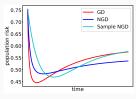
Bias-variance Tradeoff: Early Stopping

We have thus far only looked at the stationary solution $(t \to \infty)$.

Question: what about algorithmic regularization such as early stopping?

Proposition. Define the optimal early-stopping bias $B^{\mathrm{opt}}(\theta) = \inf_{t \geq 0} B(\theta(t))$.

- 1. When $\Sigma_{\theta} = \Sigma_{x}^{-1}$ (misaligned), $B^{\mathrm{opt}}(\theta_{P}) \geq B^{\mathrm{opt}}(\theta_{F^{-1}})$.
- 2. When $\Sigma_{\theta} = I_d$ (isotropic), $B^{\text{opt}}(\theta_I) \leq B^{\text{opt}}(\theta_{F^{-1}})$.
- 3. The variance $V(\theta_P(t))$ monotonically increases through time.
- (3) suggests that early stopping is beneficial when data is noisy (due to reduction of variance).
- (1-2) suggests that early stopping may not alter the comparison of the well-specified bias (between GD and NGD).



Question: What about the **early stopping time**, i.e. number of steps (efficiency) needed to achieve the *optimal population risk*?

RKHS Regression: Fast Decay of Population Risk

<u>Aim to show:</u> preconditioning \Rightarrow efficient reduction of *population risk*.

- Model: $y_i = f^*(\mathbf{x}_i) + \varepsilon_i$. $S : \mathcal{H} \to L_2(P_X)$. $\Sigma = S^*S$; $L = SS^*$.
- Optimization: $f_t = f_{t-1} \eta(\Sigma + \alpha I)^{-1}(\hat{\Sigma}f_{t-1} \hat{S}^*Y), f_0 = 0. f_t \in \mathcal{H}.$

Remark: the population Fisher corresponds to the *covariance operator* Σ . The update is thus an **additive interpolation** between GD and NGD.

Assumptions:

- Source Condition: $\exists r \in (0, \infty)$ s.t. $f^* = L^r h^*$ for some $h^* \in L_2(P_X)$.
- Capacity Condition: $\exists s>1$ s.t. $\mathrm{tr}\Big(\Sigma^{1/s}\Big)<\infty$ and $2r+s^{-1}>1$.
- Regularity of RKHS: $\exists \mu \in [s^{-1},1], C_{\mu} > 0$ s.t. $\sup_{\mathbf{x}} \|\Sigma^{1/2-1/\mu} K_{\mathbf{x}}\|_{\mathcal{H}} \leq C_{\mu}$.

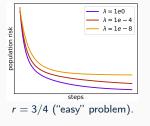
Remark: source condition relates to the previously discussed <u>alignment</u>: large $r \Rightarrow$ smoother teacher model, i.e. "easier" problem; vice versa.

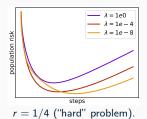
Fast Decay of Population Risk (continued)

Theorem (informal). Given $\mu \leq 2r$ or $r \geq 1/2$, for sufficiently large n, preconditioned update with $\alpha = n^{-\frac{2s}{2rs+1}}$ achieves the minimax optimal convergence rate $R(f_t) = \|Sf_t - f^*\|_{L_2(P_X)}^2 = \tilde{O}\Big(n^{-\frac{2rs}{2rs+1}}\Big)$ in $t = \Theta(\log n)$ steps, whereas ordinary gradient descent requires $t = \Theta\Big(n^{\frac{2rs}{2rs+1}}\Big)$ steps.

Remark: similar to the role of momentum [Pagliana and Rosasco 2019].

- The optimal interpolation coefficient α and stopping time t are chosen to balance the bias and variance.
- α increases with r NGD is advantageous for "hard" problems.





Discussion and Conclusion

Overparameterized Least Squares Regression:

- Identified factors that impact the generalization of ridgeless interpolant.
 - NGD is advantageous under *noisy labels* or *misaligned* ("hard") problem.
- Discussed how bias-variance tradeoff can be realized.

RKHS Regression: preconditioned update achieves minimax optimal rate in much fewer steps (i.e. faster decay in population risk).

Neural Networks: empirical trends matching our theoretical analysis.

Future directions:

- Understand time-varying preconditioners (e.g. adaptive methods)
- Characterize additional factors (gradient noise, step size, etc.)
- Combine analysis with explicit regularization.

<u>Companion work:</u> Wu, D. and Xu, J. (2020). On the Optimal Weighted ℓ_2 Regularization in Overparameterized Linear Regression. *NeurIPS 2020*.

Additional Reference

- Amari, S.I., 1998. Natural gradient works efficiently in learning.
- Rubio, F. and Mestre, X., 2011. Spectral convergence for a general class of random matrices.
- Martens, J., 2014. New insights and perspectives on the natural gradient method.
- Wilson, A.C., Roelofs, R., Stern, M., Srebro, N. and Recht, B., 2017. The marginal value of adaptive gradient methods in machine learning.
- Dobriban, E. and Wager, S., 2018. High-dimensional asymptotics of prediction: Ridge regression and classification.
- Jacot, A., Gabriel, F. and Hongler, C., 2018. Neural tangent kernel: Convergence and generalization in neural networks.
- Arora, S., Du, S.S., Hu, W., Li, Z. and Wang, R., 2019. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks.
- Pagliana, N. and Rosasco, L., 2019. Implicit Regularization of Accelerated Methods in Hilbert Spaces.