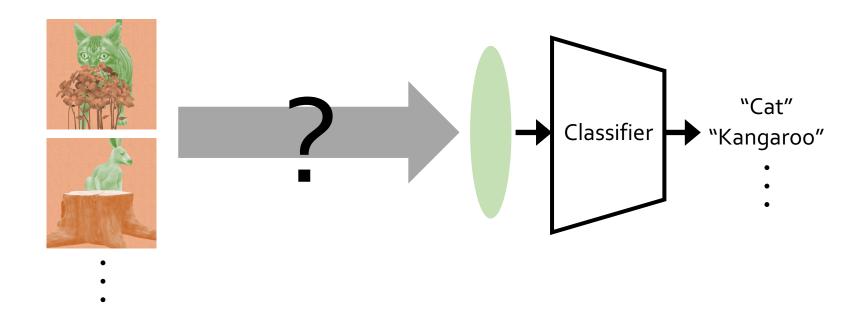
Drop-Bottleneck

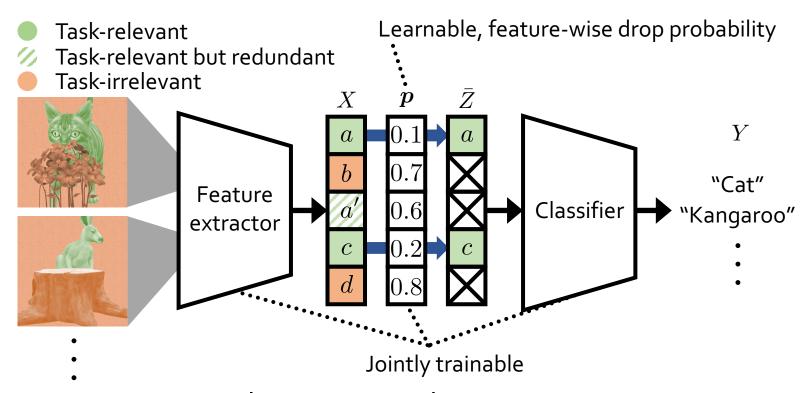
Learning Discrete Compressed Representation for Noise-Robust Exploration

Jaekyeom Kim, Minjung Kim, Dongyeon Woo & Gunhee Kim

Overview



Overview



Discretely compressed representations via information bottleneck (IB) framework!

Motivation

Information bottleneck (IB) framework*

minimize
$$-\underbrace{I(Z;Y)}_{\text{prediction}} + \beta \underbrace{I(Z;X)}_{\text{compression}}$$

Motivation

Information bottleneck (IB) framework*

minimize
$$-\underbrace{I(Z;Y)}_{\text{prediction}} + \beta \underbrace{I(Z;X)}_{\text{compression}}$$

- IB method that provides
 - non-stochastic compressed representations for stability and consistency
 - o increased practical efficiency as the result of compression

Motivation

Information bottleneck (IB) framework*

minimize
$$-\underbrace{I(Z;Y)}_{\text{prediction}} + \beta \underbrace{I(Z;X)}_{\text{compression}}$$

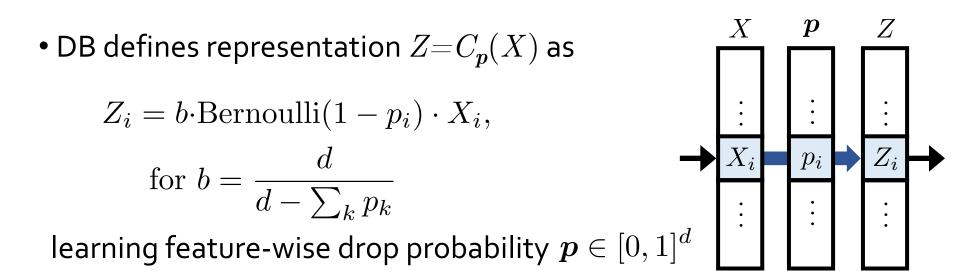
- IB method that provides
 - non-stochastic compressed representations for stability and consistency
 - o increased practical efficiency as the result of compression
- Prior IB methods (e.g. VIB[†]) lack the properties.

Drop-Bottleneck (DB)

 Our approach (Drop-Bottleneck): IB method that discretely drops irrelevant features with joint feature learning

Drop-Bottleneck (DB)

 Our approach (Drop-Bottleneck): IB method that discretely drops irrelevant features with joint feature learning



Objective and Training of DB

We derive and minimize upper bound of compression term as

$$I(Z;X) \leq \hat{I}(Z;X) = \sum_{i=1}^{d} I(Z_i;X_i)$$

$$\approx \sum_{i=1}^{d} H(X_i)(1-p_i)$$

$$X \quad p \quad Z$$

$$\vdots \quad \vdots \quad \vdots$$

$$X_a \quad p_a \quad Z_a$$

$$\vdots \quad \vdots \quad \vdots$$

$$X_b \quad p_b \quad Z_b$$

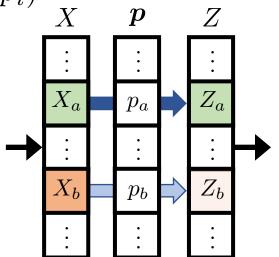
$$\vdots \quad \vdots \quad \vdots$$

Objective and Training of DB

• We derive and minimize upper bound of compression term as

$$I(Z;X) \le \hat{I}(Z;X) = \sum_{i=1}^{d} I(Z_i;X_i)$$
$$\approx \sum_{i=1}^{d} H(X_i)(1-p_i)$$

- Z is not differentiable w.r.t. p
 - ⇒ use Concrete relaxation of Bernoulli*



^{*} Maddison et al., 2017, The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables

Objective and Training of DB

We derive and minimize upper bound of compression term as

$$I(Z;X) \le \hat{I}(Z;X) = \sum_{i=1}^{d} I(Z_i;X_i)$$
$$\approx \sum_{i=1}^{d} H(X_i)(1-p_i)$$

- Z is not differentiable w.r.t. p⇒ use Concrete relaxation of Bernoulli*
- Allows joint training with feature extractor that outputs X, via prediction term (e.g. using Deep InfoMax[†])

 X_a

 p_a

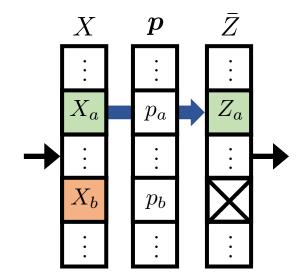
 X_{b} p_b * Maddison et al., 2017, The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables

[†] Hjelm et al., 2019, Learning deep representations by mutual information estimation and maximization

Deterministic Compressed Representations

• We define deterministic compressed representation $\bar{Z}=\bar{C}_{\boldsymbol{p}}(X)$ as

$$\bar{Z}_i = \bar{b} \cdot \mathbb{1}(p_i < 0.5) \cdot X_i, \text{ for } \bar{b} = \frac{d}{\sum_k \mathbb{1}(p_k < 0.5)}$$

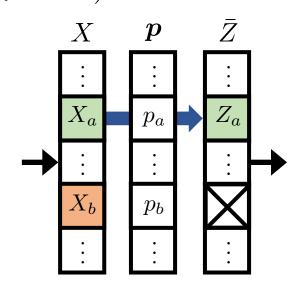


Deterministic Compressed Representations

• We define deterministic compressed representation $\bar{Z}=\bar{C}_{m{p}}(X)$ as

$$\bar{Z}_i = \bar{b} \cdot \mathbb{1}(p_i < 0.5) \cdot X_i, \text{ for } \bar{b} = \frac{d}{\sum_k \mathbb{1}(p_k < 0.5)}$$

 Useful for inference tasks that require consistent representations



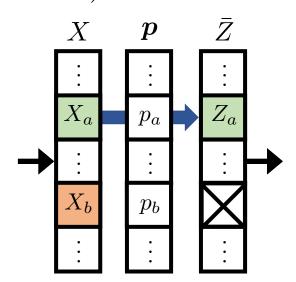
Deterministic Compressed Representations

• We define deterministic compressed representation $\bar{Z}=\bar{C}_{\pmb{p}}(X)$ as

$$\bar{Z}_i = \bar{b} \cdot \mathbb{1}(p_i < 0.5) \cdot X_i, \text{ for } \bar{b} = \frac{d}{\sum_k \mathbb{1}(p_k < 0.5)}$$

 Useful for inference tasks that require consistent representations

 Provides feature dimensionality reduction at inference time



Exploration in RL Environments with DB

ullet We train $oldsymbol{p}$ and f_ϕ using DB and Deep InfoMax with

$$X = f_{\phi}(S'), \quad Z = C_{\mathbf{p}}(X), \quad Y = C_{\mathbf{p}}(f_{\phi}(S))$$

for transitions (S,A,S')

Exploration in RL Environments with DB

• We train ${m p}$ and f_ϕ using DB and Deep InfoMax with $X=f_\phi(S'),\quad Z=C_{{m p}}(X),\quad Y=C_{{m p}}(f_\phi(S))$ for transitions (S,A,S')

• $I(Z;Y) = I(C_{\mathbf{p}}(f_{\phi}(S')); C_{\mathbf{p}}(f_{\phi}(S)))$ encourages compressed representations of S and S' predictable about each other

Exploration in RL Environments with DB

• We train m p and f_ϕ using DB and Deep InfoMax with $X=f_\phi(S'),\quad Z=C_{m p}(X),\quad Y=C_{m p}(f_\phi(S))$ for transitions (S,A,S')

• $I(Z;Y) = I(C_{\mathbf{p}}(f_{\phi}(S')); C_{\mathbf{p}}(f_{\phi}(S)))$ encourages compressed representations of S and S' predictable about each other

• We keep episodic memory* $M=\{\bar{C}_{\boldsymbol{p}}(f_{\phi}(s_1)),\ldots,\bar{C}_{\boldsymbol{p}}(f_{\phi}(s_{t-1}))\}$ and quantify novelty of s_t using Deep InfoMax's discriminator

Experiments: Exploration in Noisy Environments

- Three noisy-TV settings: ImageAction, Noise, NoiseAction*
- Environments: DMLab, VizDoom

Method	VizDoom							DMLab					
	Sparse			Very Sparse			Sparse			Very Sparse			
	IA	N	NA	IA	N	NA	IA	N	NA	IA	N	NA	
PPO	0.00	0.00	0.00	0.00	0.00	0.00	8.5	11.6	9.8	6.3	8.7	6.1	
+ ICM	0.00	0.50	0.40	0.00	0.73	0.20	6.9	7.7	7.6	4.9	6.0	5.7	
+ EC	_	_	_	_	_	_	13.1	18.7	14.8	7.4	13.4	11.3	
+ ECO	0.21	0.70	0.33	0.19	0.79	0.50	18.5	28.2	18.9	16.8	26.0	12.5	
+ Ours	0.90	1.00	0.99	0.90	1.00	0.90	30.4	32.7	30.6	28.8	29.1	26.9	

^{*} Savinov et al., 2019, Episodic Curiosity through Reachability

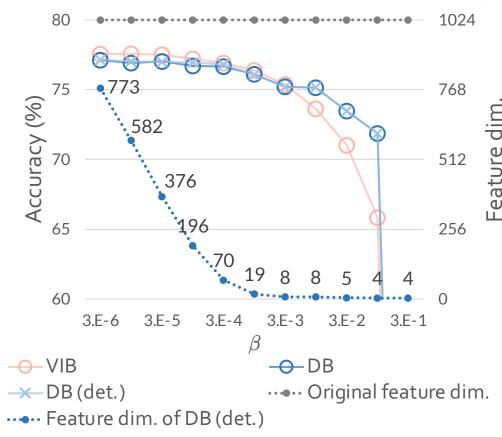
Experiments: Exploration in Noisy Environments

- Three noisy-TV settings: ImageAction, Noise, NoiseAction*
- Environments: DMLab, VizDoom
- SOTA in all tasks (average episodic sum of rewards; higher is better)

Method	VizDoom							DMLab						
	Sparse			Very Sparse			Sparse			Very Sparse				
	IA	N	NA	IA	N	NA	IA	N	NA	IA	N	NA		
PPO	0.00	0.00	0.00	0.00	0.00	0.00	8.5	11.6	9.8	6.3	8.7	6.1		
+ ICM	0.00	0.50	0.40	0.00	0.73	0.20	6.9	7.7	7.6	4.9	6.0	5.7		
+ EC	_	_	_	_	_	_	13.1	18.7	14.8	7.4	13.4	11.3		
+ ECO	0.21	0.70	0.33	0.19	0.79	0.50	18.5	28.2	18.9	16.8	26.0	12.5		
+ Ours	0.90	1.00	0.99	0.90	1.00	0.90	30.4	32.7	30.6	28.8	29.1	26.9		

^{*} Savinov et al., 2019, Episodic Curiosity through Reachability

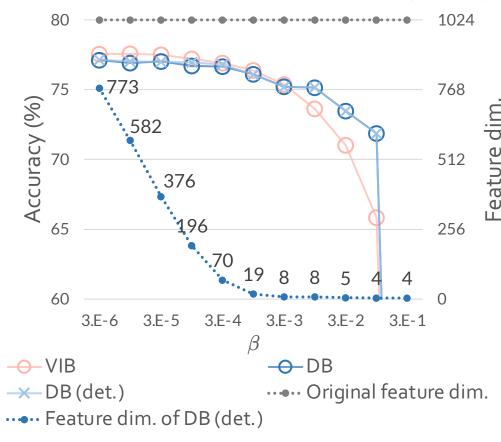
 ImageNet classification accuracy and feature dimensionality of VIB* and DB (+ deterministic) equipped with Inception-ResNet-v2



^{*} Alemi et al., 2017, Deep Variational Information Bottleneck

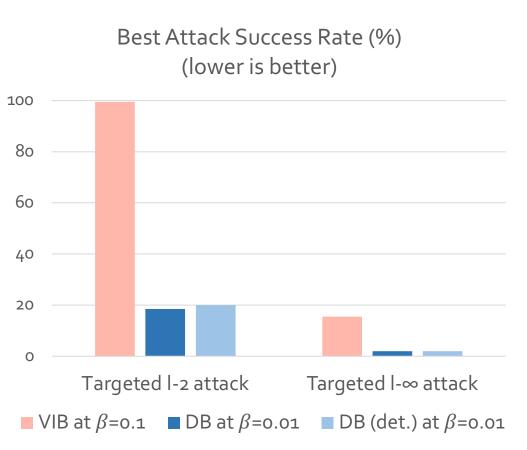
 ImageNet classification accuracy and feature dimensionality of VIB* and DB (+ deterministic) equipped with Inception-ResNet-v2

• DB's deterministic representation achieves accuracy $\geq 75\%$ using only 8 features



^{*} Alemi et al., 2017, Deep Variational Information Bottleneck

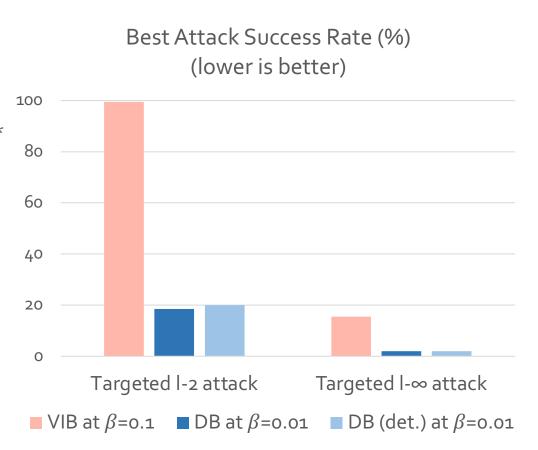
 Comparison of VIB and DB's robustness to targeted I-2 and I- ∞ adversarial attacks*



^{*} Carlini & Wagner, 2017, Towards Evaluating the Robustness of Neural Networks

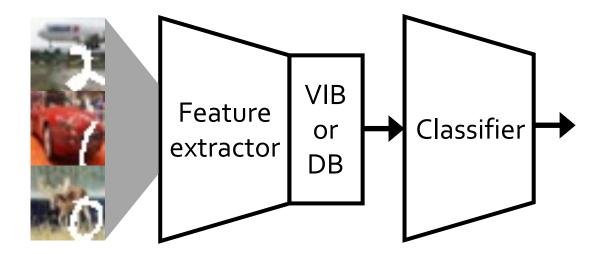
 Comparison of VIB and DB's robustness to targeted I-2 and I- ∞ adversarial attacks*

 DB (+ deterministic) shows superior adversarial robustness to VIB

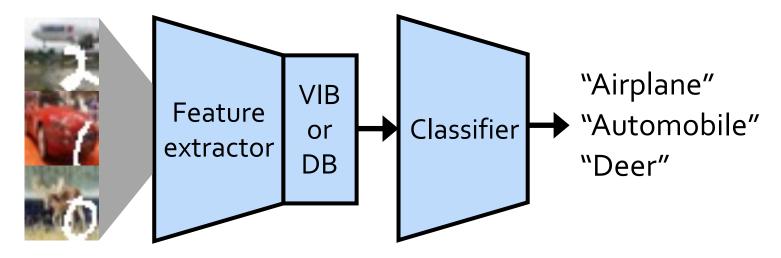


^{*} Carlini & Wagner, 2017, Towards Evaluating the Robustness of Neural Networks

Testing task-irrelevant information removal using Occluded CIFAR*

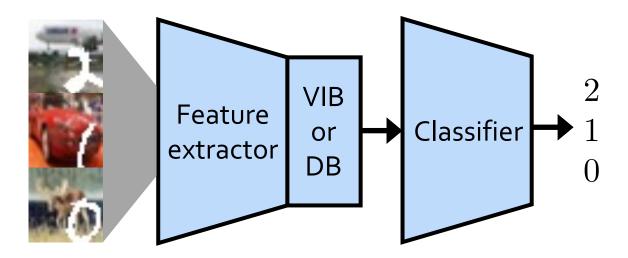


Testing task-irrelevant information removal using Occluded CIFAR*



Phase 1: full training with primary (CIFAR) labels

Testing task-irrelevant information removal using Occluded CIFAR*

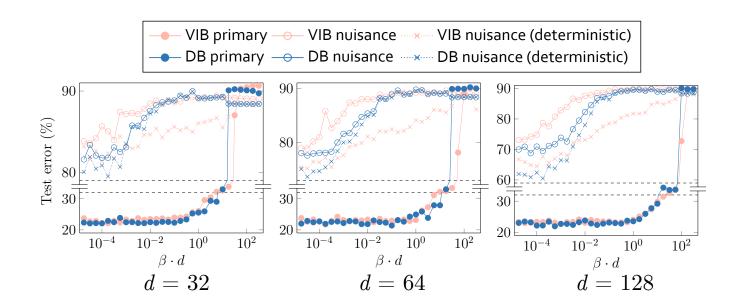


Phase 1: full training with primary (CIFAR) labels

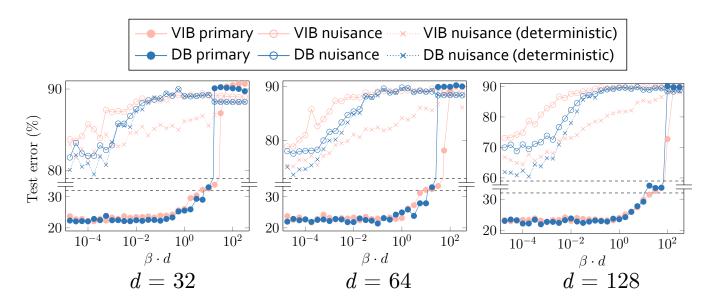
Phase 2: training new classifier only, using nuisance (MNIST) labels

* Achille & Soatto, 2018, Information Dropout: Learning Optimal Representations Through Noisy Computation

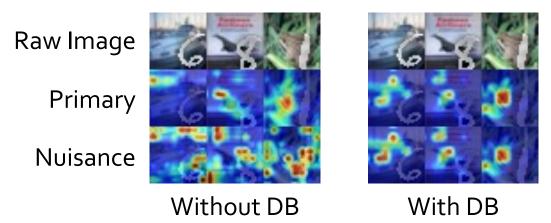
• Nuisance information is removed to maximum first as β grows \Rightarrow controllability over information removal



- Nuisance information is removed to maximum first as β grows \Rightarrow controllability over information removal
- Deterministic DB effectively discards irrelevant information as well



- Nuisance information is removed to maximum first as β grows \Rightarrow controllability over information removal
- Deterministic DB effectively discards irrelevant information as well
- We provide GradCAM* visualization of features used



^{*} Selvaraju et al., 2017, Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

Conclusion

- Discrete IB method which jointly learns features and drops taskirrelevant ones
- Provides deterministic representations for inference
- Effective for robustness, feature dimensionality reduction and distilling relevant information
- Achieves SOTA performance in noisy exploration tasks

Thank you

Poster session **6** May 4, 2021, 5 p.m. (PDT)

https://openreview.net/forum?id=1rxHOBjeDUW

https://vision.snu.ac.kr/projects/db

jaekyeom@snu.ac.kr