Into the Wild with AudioScope: Unsupervised Audio-Visual Separation of On-Screen Sounds

(Resized still with or without overlaid attention map from "Whitethroat" by S. Rae, license: CC BY 2.0.)

Efthymios Tzinis^{1,2*}, Scott Wisdom², Aren Jansen², Shawn Hershey², Tal Remez², Daniel P. W. Ellis², John R. Hershey²

International Conference on Learning Representations 2021

Ideally we want to automatically separate all types of sounds which appear on screen

Goal: Capturing sounds which are present on-screen

Video clip from <u>"Luchador and Yellow Jumpsuit"</u> by tenaciousme, license: <u>CC-BY 2.0</u>. Ideally we want to automatically separate all types of sounds which appear on screen

Goal: Capturing sounds which are present on-screen

- Conventional recipe: Train a separation system:
- Find good data to train with...
- Sound separation in-the-wild:
 - Not easy (nearly impossible) to gather

supervised data

Video clip from <u>"Luchador and Yellow Jumpsuit"</u> by tenaciousme, license: <u>CC-BY 2.0</u>. Ideally we want to automatically separate all types of sounds which appear on screen

Goal: Capturing sounds which are present on-screen

Conventional recipe: Train a separation system:

• Find good data to train with...

Sound separation in-the-wild:

Not easy (nearly impossible) to gather supervised data

AudioScope overcomes limitations of prior work:

- No dependence on **object detection** systems.
- No assumption about **number/class** of sounds.
- No assumption about training with strictly
 on-screen-only mixtures

Video clip from <u>"Luchador and Yellow Jumpsuit"</u> by tenaciousme, license: <u>CC-BY 2.0</u>.

Our recipe

A. Make our sound separation network work with **in-the-wild mixtures** (no ground-truth sources).

Our recipe

- A. Make our sound separation network work with **in-the-wild mixtures** (no ground-truth sources).
- B. Develop a dataset with in-the-wild videos with on-screen and off-screen sounds.

Our recipe

- A. Make our sound separation network work with **in-the-wild mixtures** (no ground-truth sources).
- B. Develop a dataset with in-the-wild videos with on-screen and off-screen sounds.
- C. Train an **audio-visual coincidence classifier** using self-supervision on audio mixtures from videos.

- A. MixIT (Mixture Invariant Training) Unsupervised single-channel audio source separation
- A self-supervised approach to source separation
 - Requires only acoustic mixtures, not isolated sources.
 - **Competitive with supervised training** in some scenarios.
 - \circ $\,$ We base our approach on the effectiveness of MixIT $\,$

Wisdom, S., Tzinis, E., Erdogan, H., Weiss, R. J., Wilson, K., and Hershey, J. R., "Unsupervised Sound Separation Using Mixtures of Mixtures." in Advances of Neural Information Processing Systems (NeurIPS) 2020.

B. In-the-wild videos dataset

YFCC100m videos:

- 200,000 videos (2500 hours)
- Diverse set of sound classes

Weak annotation of open-domain dataset:

- Using an unsupervised coincidence model [Jansen et al. 2020], we filtered for video clips with likely on-screen sounds.
- According to weak annotations, ~30% of clips do not contain on-screen sounds / low audio-visual correspondence.

Human annotation of data

• 40,000 clips (55.5 hours)

Top coincidence videos ~36,000 All videos ~200,000

Video soundtrack

• Separate the sounds and compute video/audio embeddings.

- Separate the sounds and compute video/audio embeddings.
- Compute audio-visual attention features.

Separation results

• Unsupervised training achieves good performance on the in-the-wild on-screen sound separation task.

		Single mixtur	e	Synthetic mixtures of mixtures				
Supervision	AUC	On-screen reconstruction SI-SNR	Off-screen power suppression	AUC	On-screen reconstruction SI-SNR	Off-screen power suppression		
Unsupervised	0.58	13.5 dB	2.5 dB	0.77	6.3 dB	9.4 dB		
Semi-supervised	0.71	14.8 dB	6.6 dB	0.82	6.1 dB	14.1 dB		
Relative change	+22%	+10%	+64%	+7%	-3%	+50%		

Separation results

- Unsupervised training achieves good performance on the in-the-wild on-screen sound separation task.
- Semi-supervised training significantly further boosts the performance.
 - Small amount of labeled data (~1%) leads to better results in terms of

detection, on-screen reconstruction, and off-screen suppression

	Single mixture					Synthetic mixtures of mixtures						
Supervision	AUC	(red	On-screen reconstruction SI-SNR		Off-screen power suppression		AUC	On-screen reconstruction SI-SNR		า on	Off-screen power suppression	
Unsupervised	0.58		13.5 dB		2.5 dB		0.77		6.3 dB		9.4 dB	
Semi-supervised	0.71		14.8 dB		6.6 dB		0.82		6.1 dB		14.1 dB	
Relative change	+22%		+10%		+64%		+7%		-3%		+50%	

Synthetic mixture example

- Corresponding soundtrack: Bird chirping + wind noise
 - Only bird appears on-screen
- Random soundtrack: Fireworks + human laugh

Input Video

Video clip from <u>"Whitethroat" by S. Rae</u>, license: <u>CC-BY 2.0</u>, with additional background audio clip from <u>video by deeje</u>, license: <u>CC-BY-SA 2.0</u>.

On-screen estimate from the input video & corresponding attention map

Video clip from <u>"Whitethroat" by S. Rae</u> with modified audio and overlaid attention map, license: <u>CC-BY 2.0</u>.

Thank you!

Poster Session 2, May 3rd 2021 9am - 11am (PDT) More examples and dataset available online: <u>audioscope.github.io</u>

